
Enso. No-code interactive 
ELT and process automation tool.



Hi, we are building Enso!

Wojciech Daniło 
Author of data processing tools 
used by Pixar and Dreamworks. 
 Haskeller, experienced in 
building compilers and GPU 
computing.

Sylwia Brodacka
Scientist, Enso team leader. Used to 
design nano multilayered materials 
to build rockets. Also, experienced 
Haskell and Python developer.

CEO & CTO COO Team of top notch devs
From Google, Facebook, Bloomberg, 
OracleLabs with strong experience in 
Data Science. Located in London, 
Krakow, Praha, etc .







of all enterprise employees are 
advanced spreadsheet users, our target users.

8%



Advanced spreadsheet users (5M in USA) waste 20% 
time on repetitive work every time data changes*. 
Enso automates it.

*Source: “The State of Self-Service Data Preparation and Analysis Using Spreadsheets", IDC InfoBrief

5M advanced spreadsheet users × $60k avg salary × 20% = 
$60b USA Market 



We raised $13M in less than 4 weeks 
(led by SignalFire & Khosla, including                 )

$1M from two of our users! 
They loved Enso so much, they 
invested as angels.



Demo



Building Enso on top of GraalVM

Jaroslav Tulach
Enso runtime engine  team 
member. Formerly GraalVM, Oracle 
Labs. Even formerly NetBeans 
Platform architect and NetBeans 
Founder.

Engine Team



GraalVM Challenges

● Enso is a Functional Language
Deep stack needed. Tail recursive functions are a 
must.

● Enso Interops with Java
Unlike other GraalVM languages, Enso doesn’t have 
C-interop, but JVM-interop!

● Enso is Polyglot by Design
Designed from the ground to interop with Python, 
JavaScript, R and other GraalVM languages!

● Enso loads Java Dynamically
Libraries are written in Enso & Java. Accompanied 
by (dynamically loaded) JAR files.



Enso - the Strict Functional Language

● Recursion everywhere
●

No for or while loops. Deeper stack than imperative 
languages. Usually OK. Can one switch to endless stack while 
running?

● Tail-recursive calls needed
”Trampoline approach” to tail calls. Leads to megamorphic calls 
sites when used all the time. Introduced @Tail_Call annotation.

● Detecting tail location candidates
Only (but possibly nested) recursive calls. Only when part of 
single Graal compilation unit.



Enso Loves Java & JDK

● Java as the system language
●

Using Java for making operating system calls. No direct C 
bindings. Libraries carry their own JAR files.

● Interop with host Java
Dynamically loading JVM classes. Unrestricted access. Opaque 
TruffleObject instances. Bugfixes needed - #4741, overloaded 
methods, statics, etc.

● Meta-level issues & mismatch
Three types of Java classes:

● Engine implementation classes
● JDK classes
● Guest objects wrapping hosted objects

https://github.com/oracle/graal/issues/4741


Enso Loves GraalPy

● Interop with any dynamic language
●

Embed code snippets directly with foreign keyword in Enso 
source files. 

● Opaque interop
No special support for Java, Python, JavaScript after creation of 
an TruffleObject instance.

● Own context for each language
PolyglotProxy is a TruffleObject that keeps GIL, TruffleContext and 
delegates to foreign TruffleObject

● Missing BigInteger interop
Enso Number represented as long, double or BigInteger. How to 
exchange BigInteger with Java or other languages?



Enso and Native Image

● Enso written in Enso
●

Core Enso libraries are written in Enso – bootstrap takes time. 
Compile with Native Image! Starts much faster. 

● Libraries carry own JAR files
Recompile Enso for every set of libraries? Use Espresso?

● Dual execution mode
Need the JVM mode as well Native mode. Libraries (including 
their JAR part) have to behave the same.

● Host Java vs. Espresso interop
How compatible is Espresso interop? Does StaticObject behave 
exactly the same as HostObject?

● Security, scalability, multi-tenancy
Espresso allows restricting operating system access. Running 
multiple engines in a single process.



Enso Tooling

● Instrumentation essential
●

Enso IDE observes and manipulates live objects in the engine. 

● Debugger
Chrome developer tools for Enso only debugging. VSCode for 
mixed Enso and Java debugging.

● Ideal Graph Visualizer
IGV recognizes Enso source files. It can connect source 
locations graphs. More…

● VisualVM
Polyglot sampling of Enso programs working and useful.

https://github.com/enso-org/enso/blob/develop/tools/enso4igv/README.md


The future of Enso

● Enso Cloud (work in progress)
Automatic scalability, real-time collaboration, easy 
sharing/selling custom data processing 
components and visualizations.

● Enso for AI and ML
Create, train, test, and manage machine learning 
models with ease and integrate them in your 
pipelines.

● “The WordPress for software.” A platform 
to rapidly build software on top of
We’ve already seen our community build all kind of 
software on top of Enso – procedural CAD tools, 
CI/CD automation, genome analysis. The ETL/data 
automation market is just a tiny segment of where 
we want to be.



Thank you!
jaroslav.tulach@enso.org


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

