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Attack schema

® Customer verification:
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®* Telephone operators

®* Two factors:
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Deepfakes and voice biometrics

1. Technical feasibility of deepfake creation

* How difficult is it to create a synthetic copy (clone) of an individual’s voice?
* How much data is needed to clone an individual’s voice in usable quality?

2. Text-independent verification and deepfakes
* Are today’s voice biometrics systems capable of detecting synthetic voice?
* How credibly are deepfakes able to reproduce the genuine utterances in text-independent verification?

3. Text-dependent vs. Text-independent verification

» |s text-dependent verification harder to spoof using deep-fakes than text-independent verification?
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Technical feasibility of deeptake creation

Research Questions:

* How difficult is it to create a synthetic copy (clone) of an individual’s voice?
* How much data is needed to clone an individual’s voice in usable quality?

) H ? speaker Speak speaker
Attacker’s choice: lorenco—— Speser |
\/ RTVC grapheme or =ynthsstzer v P fpge_gt]reolgram
° MUltlple beneﬁts rega rding Usab|||ty phoneme —>Encoder—> concat —>» Attention —>Decoder » VVocoder —> waveform
sequence
* Only 5sec embedding recording RTVC pipeline

e Endless possibilities

Three TTS tools

e QOverdub

e ResembleAl

e Real-Time-Voice-Cloning (RTVC)
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Experiment results

How difficult is it to create a synthetic copy (clone) of an individual’s voice?

 commercial tools 2 + simple — limited usability
e open-source tools = + highly usable — demanding

e 2 -3 weeks to learn the essentials

How much data is needed to clone an individual’s voice in usable quality?

 5seconds = RTVC tool + pretrained model
e 20 minutes = fine-tuning pretrained model
e 20 hours = completely new model

-r FIT EUROPEN 2022 e Security@FIT



Deepfakes and voice biometrics

1. Technical feasibility of deepfake creation
* How difficult is it to create a synthetic copy (clone) of an individual’s voice?
* How much data is needed to clone an individual’s voice in usable quality?

2. Text-independent verification and deepfakes
* Are today’s voice biometrics systems capable of detecting synthetic voice?
* How credibly are deepfakes able to reproduce the genuine utterances in text-independent verification?

3. Text-dependent vs. Text-independent verification

* Is text-dependent verification harder to spoof using deep-fakes than text-independent verification?
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Text-independent verification and deepfakes

Research Questions:

* Are today’s voice biometrics systems capable of detecting synthetic speech?

* How credibly are deepfakes able to reproduce the genuine utterances in
text-independent verification?

Two voice biometrics

* Microsoft Speaker Recognition API
* Phonexia Voice Verify Demo

Examined areas

 Behavior of voice biometrics when facing deepfakes
 Created English and Czech deepfake dataset

* |In-depth tests of MS Speaker Recogniton API
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Verification scores

Microsoft Speaker Recognition AP| Phonexia voice verify demo
* Genuine scores in range [0.75;0.9] * Verification results:
* Text-dependent and text-independent Tool Verification result
* Deepfake scores: RTVC .
Verification type Tool Matching score Overdub .
text-dependent  RTVC 0.592 ResembleAl &8
Overdub -
ResembleAl 0.559
text-independent RTVC 0.623
Overdub -

ResembleAl 0.601
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Verification graphs
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Deepfake dataset

Subset of CommonVoice Corpus 6.1
* 100 English and 60 Czech speakers

10 sentences per speaker

Synthesized using the RTVC tool + fine-tuning

Dataset was published
* https://drive.google.com/drive/u/2/folders/1vIR-TA7gjKzjYylxzZRnA HzZEyWilLeOk

-r FIT EUROPEN 2022 e Security@FIT


https://drive.google.com/drive/u/2/folders/1vlR-TA7gjKzjYylxzRnA_HzZEyWiLeOk

Deepfake vs. genuine speech

Score distributions experiment: English deepfake Score distributions experiment: Czech deepfake
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Deepfake vs. genuine speech
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Experiment results

* Are today’s voice biometrics systems capable of detecting synthetic voice?
* The tested voice biometrics systems were unable to detect synthetic speech
* The voice biometrics systems in general might not be able to detect deepfakes
* More robust testing with more voice biometrics systems must be executed

* How credibly are deepfakes able to reproduce the genuine utterances in text-independent
verification?
» Deepfakes are able to reproduce the genuine utterances very precisely
* |In the case of our dataset, the deepfake matching scores almost exactly reproduced the genuine ones
» Deepfakes present dangerous means to spoof the voice biometrics systems
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Deepfakes and voice biometrics

1. Technical feasibility of deepfake creation

* How difficult is it to create a synthetic copy (clone) of an individual’s voice?
* How much data is needed to clone an individual’s voice in usable quality?

2. Text-independent verification and deepfakes
* Are today’s voice biometrics systems capable of detecting synthetic voice?
* How credibly are deepfakes able to reproduce the genuine utterances in text-independent verification?

3. Text-dependent vs. Text-independent verification
* Is text-dependent verification harder to spoof using deep-fakes than text-independent verification?
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Text-dependent vs. Text-independent verification

Research Questions:
* s text-dependent verification harder to spoof using deepfakes than text-
independent verification?

Motivation and design
 Aninteresting difference in text-dependent and text-independent matching scores
e Feature or coincidence?

* Small proof-of-concept dataset
5 speakers
e MS Speaker Recognition API

 Comparison of text-dependent and text-independent scores for each speaker
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Experiment execution
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Experiment results

Is text-dependent verification harder to spoof using deepfakes than text-independent
verification?

* The deepfake matching scores differ vastly from the genuine ones

It is much easier to reproduce the matching scores of text-independent verification
More robust testing must be carried out

» Text-dependent verification is a well-known method that is implemented in many systems
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Deepfakes and people

1. Human capabilities of detecting deepfakes
* Are humans able to spot deepfake recordings?
e Can we generally evaluate human ability on deepfake detection?
* Are there any factors affecting human detection of deepfakes?
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Deepfakes and people

Are humans able to spot deepfake recordings?

Can we generally evaluate human ability on deepfake detection?

Are there any factors affecting human detection of deepfakes?

Speaker similarity survey

10 speakers
* 1 genuine, 2 deepfake attempts per speaker

100 responses
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Experiment execution
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Error rates depending on sex and age.
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Experiment results

* Are humans able to spot deepfake recordings?
* Most of the deepfake verification attempts were accepted by humans
* Younger persons were more successful in identifying deepfakes

* Can we evaluate human ability on deepfake detection in general?
* The human ability to identify deepfakes is generally low
* More robust experiments are required

* Are there any factors affecting human detection of deepfakes?
e Age influenced the results the most
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Finally — the practical lesson :)
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