Ceské spoletnost uZivateli otevienych systémi EurOpen.CZ
Czech Open System Users’ Group
WWW.europen.cz

54. konference

Shornik prispévki

Balonovy hotel a pivovar, Radesin
28. kvétna — 1. ¢ervna 2022

Programovy vybor:

Petr Svenda (pFedseda, Masarykova univerzita),
Milan Broz (Masarykova univerzita),

Vit Buka¢ (HERE Technologies),

Jan Hajny (Vysoké uceni technické v Brng),
Matus Jokay (FEI STU),

Jan Krhovjak (Invasys),

Marek Kumpost (Oracle NetSuite),

Vaclav Lorenc (HERE Technologies),
Vasek Matyas (Masarykova univerzita),
Zdenek Riha (Masarykova univerzita),
Marek Sys (Masarykova univerzita)

Sbornik prispévki z 54. konference EurOpen.CZ, 28.5.-1.6. 2022
(©EurOpen.CZ, Univerzitni 8, 306 14 Plzen

Plzen 2022. Prvni vydani.

Editor: Zdenck Sustr

Sazba a graficka prava: Zdenck Sustr, vydavatelstvi, Praha
e-mail: vydavatelstvi@sustr.net

Tisk: Typos, tiskaiské zavody, s.r.o.
Podnikatelska 1160/14, Plzen

Upozornéni: Vsechna prava vyhrazena. Rozmnozovani a Sifen{ této pub-
likace jakymkoliv zpisobem bez vyslovného pisemného svoleni vydavatele
je trestné.

Prispévky neprosly redakéni ani jazykovou tpravou.

ISBN 978-80-86583-34-1

Obsah

Willi Lazarov, Zdenék Martinasek, Roman Kiimmel
PTWEBDISCOVER: Nastroj pro efektivni mapovani webovych
aplikaci béhem penetracéniho testovani 7

Mgr. Jan Kvapil
Bug Bounty Hunting 19

Adam Janovsky, Petr Svenda, Jan Jancar, Jiri Michalik, Stanislav
Bobon
Bungle in the jungle: Analysing the security certifications landscape 29

Jaroslav Reznik

Vladni certifikace a otevieny software 47
Jan Dusatko

Standardizace v oblasti kryptografie 55
Milan Broz

Lesk a bida Sifrovani diskd 59

Tomas Weinfurt
Certificate Validation 73

Antonin Dufka, Jakub Janki, Jifi Gavenda, Petr Svenda
MeeSign: Prahové podepisovani pro spravu elektronickych dikazia . 85

Roman Oravec
Binary Obfuscation using the LLVM Framework 93

Adam Ruman, Daniel Koufil
Detection of Malicious Code in SSH programs 115

4 OBSAH

Anton Firc, Kamil Malinka, Petr Hanacek
Creation and detection of malicious synthetic media — a preliminary

survey on deepfakes Lo Lo 125
Petr Jedlicka

Hardwarové akcelerovana kryptografie s vyuzitim FPGA 147
Martin Sebela 5

Phishingator aneb cviény phishing ,nejen“ na ZCU 155
Anton Firc, Kamil Malinka

Practical lessons of (deep)faking human speech 161

Martin Peresini, Ivan Homoliak, Kamil Malinka, Federico Matteo
Bencié¢, Tomas Hladky

Simulations of DAG-based Blockchain Protocols and Attacks on the
PHANTOM Protocol via Transaction Selection Strategies 173

Ivan Homoliak
The Security Reference Architecture for Blockchains: Towards a
Standardized Model for Studying Vulnerabilities, Threats, and Defenses185

Ondrej Hujnak, Kamil Malinka, Petr Hanacek
E-Banking Authentication — Dynamic Password Generators and
Hardware Tokens 211

54. KONFERENCE EUROPEN.CZ 7

PTWEBDISCOVER: NASTROJ PRO EFEKTIVNI
MAPOVANI WEBOVYCH APLIKACI BEHEM
PENETRACNIHO TESTOVANI

Willi Lazarov, Zdené€k Martinidsek, Roman Kiimmel

E-MAIL: {XLAZAR15,MARTINASEK } @QVUT.CZ,
R.KUMMEL@HACKER-CONSULTING.CZ

Abstrakt

Cldnek popisuje ndstroj ptwebdiscover, ktery je urcen k mapovdni webovijch apli-
kaci béhem penetracniho testovani. Hlavni rozdil od soucasnijch dostupnijch nd-
stroji predstavuje beh ve vice vidknech a roz§itujici moznosti testovdani. Prikladem
téchto moznosti je aplikovdni metody hrubé sily v situacich, kdy je nutné hledat
kratsi ndzvy soubori nebo moznost oznacit v testovaném URL konkrétni misto,
na které bude program vklddat ovéFované fetézce. Cldnek ddle popisuje vlastni
vicevldknovou implementaci ndstroje, inteligentni vyhleddvdni zdloh a porovndnt
s konkurencénimi ndstroji pro penetracni testovani webovych aplikact.

Klic¢ova slova: Penterep; ptwebdiscover; penetraéni testovani; webové
aplikace; OWASP

1 Uvod

Kybernetické utoky na informaéni a komunika¢ni systémy statni spravy,
komer¢nich firem i béznych koncovych uzivatelii predstavuji v dnesni dobé
realnou hrozbu a jejich Cetnost se neustéle zvySuje. Jednou z Gcinnych
moznosti ochrany je pravidelné realizace a vyhodnoceni penetracnich test,
béhem kterych 1ze odhalit mozné slabiny a zranitelnosti d¥ive, nez je odhali
a zneuziji potencialni ttocnici. Diky tomuto preventivnimu opatieni muze

8 Willi Lazarov, Zdenék Martindsek, Roman Kiimmel

provozovatel testované aplikace nalezené nedostatky odstranit a ptedejit
tak velice nepfijemnym nasledktim kybernetickych tatoka [1]. Nastroj
popsany v tomto ¢lanku se zaméfuje na penetraéni testovani webovych
aplikaci, které jsou z diivodu jejich snadné dostupnosti ¢astym cilem utoki,
a predstavuji tak vstupni branu pro eskalaci dalsich utokia.

Kazdy penetra¢ni test webové aplikace by mél zacinat prizkumem
prost¥edi a dikladnym zmapovanim testované aplikace [2]. ! Béhem ma-
povani muze tester odhalit nejen vSechny vefejné dostupné zdroje, na
které aplikace odkazuje, nebo je nacité, ale i zdroje, na které zadny odkaz
nesméruje, a nejsou proto indexovany. Takovymi zdroji jsou napiiklad
soubory s logy, administrace nebo ¢asto také zalohy. Déle se napiiklad
u nalezenych adresait testuje, zda neni povolen vypis jejich obsahu. Po-
dobné bezpecnostni nedostatky mohou mit vazné dopady, a proto je jejich
odhaleni i pfes znac¢nou ¢asovou néaro¢nost velice dulezité. Je tieba si
uvédomit, ze pokud je ttocnik dostateéné motivovan, tak pro néj neni
¢as hlavnim limitujicim faktorem. Tato skutec¢nost je ve velkém kontrastu
s penetraénim testovanim, kde je naopak Cas straveny testovanim zasadni.

1.1 Soucasny stav

V soucasné dobé patfi mezi nejpouzivanéjsi nastroje pro mapovani webo-
vych aplikaci dirb, dirbuster, dirsearch a dirstalk. Uvedené nastroje
maji ovSem nékolik zasadnich nevyhod, které limituji jejich pouziti. Mezi
nejpodstatnéjsi nevyhody z pohledu penetrac¢niho testovani patii nemoz-
nost vyhledavani subdomén a zdrojui v libovolné ¢asti URL (Uniform
Resource Locator), chybé&jici podpora vicevlaknového zpracovani, nebo
neefektivni vyhledavani zaloh. Podrobny seznam funkcionalit néstrojua pro
mapovani webovych aplikaci je uveden v podkapitole 3.

1.2 Vlastni prinos

Jednim z vystupt aplikovaného vyzkumu, jehoz cflem bylo vyvinout plat-
formu pro penetraéni testovani s nazvem Penterep?, je novy néstroj ptweb-
discover. Néstroj byl vyvinut s hlavnim cilem eliminovat vySe uvedené
nedostatky a zefektivnit tak praci penetra¢nich testeri. Vysledny néstroj

! Penetraéni test by mél nasledovat kroky metodologie OWASP ASVS (Application
Security Verification Standard).

20ficialni webova prezentace platformy je dostupna na adrese https://www.penterep.
com.

https://www.penterep.com
https://www.penterep.com

54. KONFERENCE EUROPEN.CZ 9

ptwebdiscover je svym pouzitim velice podobny zndmému nastroji dirb,
ktery je implicitné obsazen v linuxové distribuci Kali Linux a testefi jsou
na jeho pouziti zvykli [3]. Hlavni rozdil od nastroje dirb predstavuje b&h
ve vice vlaknech, diky kterému miize byt nastroj ptwebdiscover mno-
honasobné rychlejsi, ¢imz se dikladnost a rychlost penetracnich testi
vyrazné zvySuje. Dalsi vyhodou néstroje je moznost aplikovani metody
hrubé sily v situacich, kdy je nutné hledat kratsi nazvy souborii, nebo
pokud je potieba odhalit pouze ¢ast jejich ndzvu (napf. po identifikaci
kratkych nazvt utokem IIS tilde enumeration). Nastroj ptwebdiscover
poskytuje také moznost oznacit v testovaném URL konkrétni misto, na
které bude skript vkladat ovéfované fetézce. Stejné tak lze oznacit i sub-
doménu, nebo konkrétni HTTP(S) GET parametr, diky ¢emuZ se néstroj
hodi i k fuzzingu. Mimo to nabizi nastroj moZnost pouZiti specialnich
slovniki, které umoznuji identifikaci pouzitych technologii na zakladé pro
né typickych souborii nebo adresaii. Nastroj ptwebdiscover Fesi efektiv-
nim zptsobem také vyhledavani zaloh, pomoci kterého se jiz na vefejné
dostupnych webovych strankach podafilo dohledat jejich velké mnozstvi.

2 Navrh a implementace nastroje

Pro zvyseni efektivity néstroje ptwebdiscover byla vyvinuta vlastni tfida
s ndzvem ptthreads®. Vyvoj této t¥idy byl uskutecnén z toho divodu, aby
bylo mozné jeji pouziti z riznych nastroja spolu s volbou poc¢tu vlaken,
ve kterych se mé spoustét pozadovani funkce. Instance tfidy pomoci
stejnojmenné funkce pfijimé nasledujici argumenty:

e pole hodnot, které se maji projit ve vice vlaknech,
e volana funkce v kazdém vldkné&,
e celkovy pocet vldken.

Volané funkci jsou ve vlaknech predavany jednotlivé polozky vstupniho
pole. Po vykonani funkce se postupné uvoliiuji rezervovana vlakna pro
dalsi iteraci. Jakmile jsou vybrany vSechny vstupni hodnoty, tak je béh
programu ukoncen. Postup p¥i implementaci je zobrazen na nasledujicim
obrazku 1.

3T¥ida ptthreads je pod otevienou licenci GPLv3+ dostupna ke staZzeni na adrese
https://pypi.org/project/ptthreads/.

https://pypi.org/project/ptthreads/

10 Willi Lazarov, Zdenék Martindsek, Roman Kiimmel

Inicializace pole

Existuji vstupni
hodnoty?

e 3

Vybrani hodnoty
ze vstupniho pole
- @

Y

s N\
Zavolani funkce f------------ »‘ Vykonani funkce
/

\

Ano

Existuji uvolnéna
vldkna?

Zahajeni cekani

Obrazek 1: Vykonani funkce ve vice vldknech pomoci t¥idy ptthreads

Uvolnéni vlakna

54. KONFERENCE EUROPEN.CZ 11

r identify of used techlologies
t

—begin_with admin

t
k old php~ php.bak
t

Found"

Obréazek 2: Ukazka vypisu nastroje v terminalu Kali Linux

3 Porovnani s konkuren¢nimi nastroji

Vsgechny podporované funkcionality jsou uvedeny v tabulce 1, ve které je
nastroj ptwebdiscover porovnan s dal$imi nastroji uréenymi pro pene-
tracni testovani webovych aplikaci. Porovnany byly nastroje ptwebdisco-
ver [4], dirstalk [5], dirb [3], dirbuster [6] a dirsearch [7]. Nastroj
ptwebdiscover je volné dostupny ke staZeni jako svobodny software pod
licenci GPLv3+ na adrese https://pypi.org/project/ptwebdiscover/
a ke dni 15. 4. 2022 ma jiz 1950 stazeni *. Rozhrani nastroje je zobrazeno
na obrazku 2, kde lze vidét i ¢asteény vycet funkei nastroje.

7 vysledku porovnani v tabulce 1 je patrné, Ze nejvice moznosti tes-
tovani nabiz{ nastroj ptwebdiscover. Chybéjici funkce tohoto nastroje
jsou pouze vystup do XML formatu a podpora klientskych certifikati,
které naopak nabizi nastroj dirbuster. Jednou z hlavnich pfednosti na-
stroje ptwebdiscover je inteligentni vyhledavani zéloh a vice nabizenych
metod pro samotné vyhledévani. Zatimco ostatni nastroje s vyjimkou na-

4S‘catistiky celkového poctu stazeni nastroje jsou dostupné na https://pepy.tech/
project/ptwebdiscover.

https://pypi.org/project/ptwebdiscover/
https://pepy.tech/project/ptwebdiscover
https://pepy.tech/project/ptwebdiscover

Willi Lazarov, Zdenék Martindsek, Roman Kiimmel

Tabulka 1: Porovnéani vlastnosti nastrojiu

Funkcionalita

Hledani soubort

Hledani adresara

Hledani subdomén

Fuzzing parametra

Hledéni v libovolné ¢asti URL
Pouziti hrubé sily

Pouziti slovnika

Filtrovani slovnika

Testovani pripon

Moznost nac¢teni pfipon ze souboru
Nastaveni minimalni délky fetézce
Nastaveni maximalni délky retézce
Pouziti prefixt a sufixt
Identifikace pouzitych technologii
Inteligentni vyhledavani zaloh
Rekurzivni prochazeni adresari
Upozoriiovani na directory listing
Nac¢teni URL adres pro otestovani
Pouziti libovolné HTTP metody
Nastaveni cookies

Nastaveni hlavi¢ky User-Agent
Nastaveni HTTP request hlavi¢ek
Pouziti proxy serveru

Béh ve vice vlaknech

Nastaveni prodlevy mezi requesty
Pozitivni hledani Fetézce v odpovédi
Negativni hledani fetézce v odpovédi
Vystup do konzole

Vystup do souboru

Vystup v JSON forméatu

Vystup v XML formatu

HTTP autentizace

Podpora klientskych certifikata
PROXY autentizace

Parsovani robots.txt

Parsovani sitemap.xml

Stazeni nalezeného obsahu
Pridavani znaku ,,/“ na konce Fetézcii
Moznost zahrnuti GET parametri
Moznost vystupu s/bez domény
Zahrnuti vysledkut z dir. listingu
Case-sensitivita u slovniki
Kopirovatelny vystup (seznam)
Automatické dohledavani zaloh
Vypsani stromové struktury

AR AR AR RN N NN XA RN RANRNRNRNRNNNCNCCCNCNNNRNRNRNRNNNSNSNSNSNSNSNSNSNNY| ptwebdiscover
3¢ % 3 3 3% M M K B M M M NAM X AN ;X AN UN NN ;X ™™ XX ™ X XXX NX XXX\ dirstalk
MM AIMMARTTRXANUXRXAUIRARCTNURRCUR X XXX CNNX XXX XxNY| dirb
ARAAARIRRERIERAUHECHERAAERRRCACACACNCERRAXXXNNX NAX NN % XX N Y| dirbuster
TIERAACHRCACAHERXERXTCTLNCTNUEXRCCNRNCNNNSNSCNNXR XXX CNNX N% %X XN || dirsearch

54. KONFERENCE EUROPEN.CZ 13

stroje dirbuster umoznuji vyhledavat pouze na zakladé slovniku, nastroj
ptwebdiscover podporuje také vyhledavani hrubou silou nebo parsovanim
obsahu.

3.1 Vyhledavani zaloh

Vefejné piistupné zalohy jsou ¢astym piikladem zranitelnosti webové
aplikace. Jednou z metod jejich vyhledévani je pouziti hrubé sily, které
se ale vzhledem k ¢asové naroc¢nosti pfili§ nepouziva. Namisto toho se
vyuziva rychlejsi metoda pomoci slovniku. Zptsoby vyhledavani zéloh jsou
u jednotlivych néastroji rtzné. Zakladnim postupem je pouziti slovniki,
ktery obsahuje nazvy soubort véetné vSech moznych piipon. Nékteré
nastroje naopak umoznuji univerzalni pouziti slovniku bez piipon, které
jsou néstroji pfedany aZz na vstupu.

P1i pouziti nastroje dirstalk je nutné nejprve vygenerovat slovnik
obsahujici hledané nazvy soubori bez moZnosti vlastni specifikace pfipon.
Efektivngjsi jsou v tomto ohledu néastroje dirb, dirbuster a dirsearch,
které nabizi moznost specifikovat pripony, které maji byt spoleéné s vy-
razy ze slovniku pouzity. Nastroj ptwebdiscover nabizi kromé specifikace
pripon navic také explicitni parametry pro vyhledavéni zaloh, pii jejichz
pouZziti nejprve zjistuje existenci daného souboru a aZ nasledné zacne
vyhledavat mozné existujici zalohy. Diky tomu je mnohem efektivnéjsi
a rychlejsi nez konkurenéni nastroje.

Dalsi pridanou funkci nastroje ptwebdiscover je inteligentni vyhle-
davani kompletnich zaloh webové aplikace nebo databaze, pti kterém se
pouziva pouze doména testovaného cile. Pro zadanou doménu jsou zkou-
Seny vSechny mozné piipony (napf¥. penterep.com.zip, penterep com.zip
apod.), diky ¢emu? lze rychle vyhledat zalohy bez nutnosti pouzit slovnik.
Oba rezimy vyhledavani zaloh jsou zachyceny na obrazku 3

Willi Lazarov, Zdenék Martindsek, Roman Kiimmel

.penterepmail.loc/phpmyadmin/./themes/original/img/|
.penterepmail.loc/phpmyadmin/./favicon.ico
.penterepmail.loc/phpmyadmin/./Documentation.html
.penterepmail.loc/phpmyadmin/./themes/original/img/|

[200] = .penterepmail.loc/phpmyadmin/changelog.php
.penterepmail.loc/phpmyadmin/./favicon.ico

[401] = .penterepmail.loc/phpmyadmin/scripts/setup.php

[200] = .penterepmail.loc/images/eshop/tshirt.png

[200] H .penterepmail.loc/phpmyadmin/license.php

[200] H .penterepmail.loc/images/eshop/cup.png

[200] H .penterepmail.loc/images/design/contact mix.jpg

[200] : .penterepmail.loc/images/eshop/voucher.png

[200] : .penterepmail.loc/inc/competition_best.shtml
.penterepmail.loc/favicon.ico
penterepmail.loc/bootstrap.min.css

[200] : .penterepmail.loc/plugins/alienInvasion/base.css

.penterepmail.loc/inc/contactus.php.bak
.penterepmail.loc/user/register.bak
.penterepmail.loc/base.bak
.penterepmail.loc/redir.php
.penterepmail.loc/base.bak
.penterepmail.loc/redir.php
.penterepmail.loc/inc/download.php_
.penterepmail.loc/inc/message.php~
.penterepmail.loc/inc/contact.php
.penterepmail.loc/inc/newmessage.php
.penterepmail.loc/inc/.%dwn_filename.
.penterepmail.loc/inc/folder.php
.penterepmail.loc/user/register.bak
.penterepmail.loc/settings/index.php~
.penterepmail.loc/getimg.php
.penterepmail.loc/admin/stats.php~
.penterepmail.loc/inc/contactus.php.bak

(a) Pouziti slovniku

http://www.penterepmail. loc

: http://www.penterepmail.loc
Discovery-type... Complete backups only
Extensions..
Method. . 25
Charset.....: abcdefghijklmnopgrstuvwxyz
Length-min. . 20 1
Length-m 3 20 6
Keyspace.... 20 321272406
Delay....... - 0.0s
Threads..... 5 20
Recurse..... 5 False
Parse content......: False
Search for backups.: False

- 3 pmail.
http://www.penterepmail.loc/

S ch for compl kur the website
200] [F] http://www.penterepmail.loc/penterepmail.tgz
[200] [F] http://www.penterepmail.loc/penterepmail.sql

i Irce
v.penterepmail.loc/
http://www.penterepmail.loc/penterepmail.sql
http://www.penterepmail.loc/penterepmail.tgz

[1] Finished in 0:00:00 - scovered: 3 items

(b) Inteligentni vyhledavani

Obréazek 3: Vyhledavani zaloh nastrojem ptwebdiscover

54. KONFERENCE EUROPEN.CZ 15
0 0
N Ne) o0 LD O 00 lipNe}
e i A NN PeN N
[\ [=2] "M A O A<t O
[ap) o0 [a\kex} o) — ~f — O
15 -
—
o
(o]
— —
©
g =
— 10
Z ©
5 N
+~ r~
g
N
g o
PRI ;
L
o qim %OOO
A © e} 0 Hl\g —_— A
e | R (N | e Hﬁﬁ ﬂﬁﬂ HHH
HH I I I
0 250 500 750 1000 1250 1500

Zpozdéni odpoveédi serveru [ms]

00 ptwebdiscover [l 0 dirstalk [0 dirsearch B B dirbuster 18 dirb ‘

Obrézek 4: Porovnani rychlosti jednotlivych néstroji

3.2 Porovnani rychlosti

Jednotlivé nastroje pro mapovani webovych aplikaci byly dale porovnany
v celkové dobé trvani testu. Porovnani rychlosti nastroji bylo provedeno
za pouZiti virtualnich stroji s linuxovou distribuci Kali Linux (zdroj testu)
a Debian (cil testu). Cilem testu byl webovy server Apache verze 2.4, na
kterém bézela zranitelnd webova aplikace, ve které byly postupné viemi
nastroji vyhledavany soubory a adresare za pouziti slovniku o celkové
velikosti 4164 slov. Pfi testovani byl u nastroji podporujicich béh ve vice
vlaknech nastaven konstantni pocet vlaken na hodnotu 100. Pro kazdy
nastroj bylo provedeno celkem 7 testt, ve kterych se zvySovala prodleva
odpovédi serveru v rozsahu 0-1500 ms. Vysledky vSech testii jsou uvedeny
v grafu 3.2.

16 Willi Lazarov, Zdenék Martindsek, Roman Kiimmel

7 grafu je patrné, ze doba trvani testi je zasadné ovlivnéna tim,
zda nastroj bézel ve vice vlaknech. Nastroje ptwebdiscover, dirstalk
a dirsearch proto dosahuji velmi podobnych vysledkt, pfi¢emz vliv zvysu-
jici se odpovédi serveru byl na dobu trvani testu téchto nastroji minimalni.
Prestoze néastroj dirbuster umoziiuje béh ve vice vlaknech, tak je ve srov-
néani s predchozimi nastroji vyrazné pomalejsi a se zvySujicim se zpozdénim
odpovédi serveru nartusta zaroven doba trvani celého testu. NejpomalejSim
byl pfi testovani dirb, ktery neumoziuje béh ve vice vlaknech a vysledky
testli jsou tak pii porovnani s ostatnimi nastroji znatelné horsi.

4 ZAavér

Cilem ¢lanku bylo blize predstavit novy néstroj ptwebdiscover pro pene-
tracni testovani webovych aplikaci. Nastroj se pii testovani ukazal jako
velmi efektivni a v porovnéani s ostatnimi nastroji pouzivanymi pro mapo-
van{ webovych aplikaci nabizi{ ptwebdiscover nejvice moznosti. Mezi jeho
hlavni pfednosti patii zejména béh nastroje ve vice vlaknech, inteligentni
vyhledavani zéloh, vyhleddvani hrubou silou a parsovanim obsahu.

Nastroj vznikl v rdmci FeSeni projektu aplikovaného vystupu, jehoz vy-
stupem jsou i dalsi nastroje urcené pro penetrac¢ni testovani webovych apli-
kaci, jako je napiiklad ptinsearcher uréeny k extrakci informaci z webo-
vych zdroji, ptmultiviews pro ovéfeni zranitelnosti MultiViews, nebo
ptiistild pro identifikaci zranitelnosti IIS Tilde Enumeration. VSechny
tyto nastroje jsou integrovany do platformy Penterep, ktera je uréena pro
komplexni realizaci a spravu penetra¢niho testovani. Jednotlivé nastroje
je také mozné vhodné kombinovat pro dosaZeni optimélnich vysledki
testovani.

Podékovani

Vyzkum a vyvoj popsany v tomto ¢lanku byl spolufinancovan se statni
podporou Technologické agentury CR v ramci Programu Zéta (&. projektu
TJ04000456).

54. KONFERENCE EUROPEN.CZ 17

Odkazy

(1]

2]

3l
(4]

5]
[6]
7]

Aileen Bacudio et al. ,An Overview of Penetration Testing®. In:
International Journal of Network Security & Its Applications 3 (lis.
2011), s. 19-38. por: 10.5121/ijnsa.2011.3602.

A. Van der Stock et al. OWASP Application Security Verification
Standard 4.0.3. 2021.

Kali Linux. Dirb. URL: https://www.kali.org/tools/dirb/.

PTWEBDISCOVER. PyPI. URL:
https://pypi.org/project/ptwebdiscover/.

Kali Linux. Dirstalk. URL: https://github.com/stefanoj3/dirstalk.
Kali Linux. Dirbuster. URL: https://wuw.kali.org/tools/dirbuster/.

Kali Linux. Dirsearch. URL: https://wuw.kali.org/tools/dirsearch/.

https://doi.org/10.5121/ijnsa.2011.3602
https://www.kali.org/tools/dirb/
https://pypi.org/project/ptwebdiscover/
https://github.com/stefanoj3/dirstalk
https://www.kali.org/tools/dirbuster/
https://www.kali.org/tools/dirsearch/

54. KONFERENCE EUROPEN.CZ 19

BuG BOUNTY HUNTING

Mgr. Jan Kvapil

Abstract

Looking for vulnerabilities in software—previously, often practices resulting in
illegal activities, now, an (extra)ordinary occupation. How to look for those
vulnerabilities legally and help to secure the software for others as well? Where
and how to submit the vulnerability disclosure report and corresponding proof of
concept? Apart from the answers, we will take a look at some publicly disclosed
reports. Next, we will see some of the available tools and also wonder, how
vulnerability disclosures fit into the open-source world and whether you should
consider starting a bug bounty program.

Disclaimer

This text is based on my (admittedly short) personal experience in bug
bounty hunting and vulnerability research. The area of interest is quite
broad and would benefit from more formal research. Maybe I will come
to that some day in the future. As such, take this paper as light and
introductory material into the interesting world of bug bounty hunting.
The following text is educational and the author does not take any
responsibility for any acts the reader might decide to partake in.

1 Introduction: an ethical hacker

Following precisely how the word hacker has been used and perceived by
various groups and the general public would probably suffice as a topic for
small research on its own. In my dictionary, this word carries less and less
of a negative connotation as time progresses. While I have yet to finish

20 Mgr. Jan Kvapil

the book Hackers: Heroes of the Computer Revolution by Steven Levy!
I can already recommend it in order to help the reader with rebuilding the
intuition behind the mindset of a hacker. A hacker is strongly driven to
understand and explore all the nooks and crannies of a given system—even,
or especially, if the authors of the system, its documentation and other
sources assure that everything works perfectly. Adding ethical in front
of the word hacker makes it transparent to the public (and the hacker as
well) that the hacker has an inner moral compass that he or she follows.

The phrase bug bounty hunter might also have its connotations. Namely,
that the motif of a bug bounty hunter is solely a financial gain. While
such motifs can be present, there are others as well. And if seen as an
occupation, bug bounty hunting does not differ from the others.

Now, I would like to walk the reader through the topics and processes
related to bug bounty hunting and ethical hacking.

1.1 Platforms and programs

A hacker spends his time exploring, testing and analysing various pieces
of software. However, such practice can lead to a significant crossing of
legal boundaries. Consider for example the Computer Fraud and Abuse
Act— Whoever having knowingly accessed a computer without authorization
or exceeding authorized access... has quite probably committed a criminal
offence under this act. Interestingly, the evolution in the security field has
lead to the creation of platforms that help to legally connect hackers with
companies. Those platforms brought also a certain notion of gamification
to the process. While the details of the security vulnerabilities are disclosed
only under certain conditions (e.g. after mutual agreement between the
hacker and the company) some information can be public, such as the
reputation and impact of the hacker.

Both hackers and companies can register on the platforms. The com-
pany creates a Bug Bounty Program (a program in the following text).
The programs can be public, i.e. anyone can see them. For example, this
is the U.S. Department of Defense’s program. Another option is a private
program, whose visibility is limited only to certain hackers. The incentives
to have a private program can vary, one can imagine that making the
program public could result in too many reports that a small company
won’t be able to handle. Access to a private program can be given after
gaining a certain amount of reputation.

ISBN-13: 978-1449388393

https://en.wikipedia.org/wiki/Computer_Fraud_and_Abuse_Act
https://en.wikipedia.org/wiki/Computer_Fraud_and_Abuse_Act
https://hackerone.com/deptofdefense?type=team

54. KONFERENCE EUROPEN.CZ 21

In general, a company can host Bug Bounty Program directly. However,
there could be a non-trivial amount of legal and financial paperwork
(payouts for bounties going all over the world). Similarly to other business
processes, bounties are subject to international laws and also sanctions,
which is quite relevant at the time of writing this text due to the ongoing
Russian invasion to Ukraine. The response of one of the platforms is worth
reading.

Some of the known platforms are HackerOne, Bugcrowd, Intigriti
(however, there many more). Understandably, the tech giants are capable
of hosting their own programs, such as Microsoft, Google. One might ask:
Can the platforms themselves be a target of an attack? I’ll answer by
quoting the last platform’s website:

After something like 2 years of virtual blood, sweat, and tears
to build this site, it took a bug hunter only a few hours to
discover our private APIs.

It is not a surprise that the well-known software companies have their
own program, however, there are also other programs worth noting. Name-
ly, The Internet Bug Bounty program (sponsored by multiple companies),
whose scope covers more and more open-source projects (e.g. The Ruby
Programming Language, Ruby on Rails, OpensSSL and others) as time
progresses. Another interesting program is the one ran by the European
Commission (hosted on Intigriti). Finally, it might be of interest that
Google’s program also spreads outside of Google’s own projects to some
open-source projecs (e.g. OSS-Fuzz projects among many other) and also
to security research in general.

2 Bug hunting

I will now show the steps leading to submitting a vulnerability report
in order to provide a better insight into it. I am most familiar with
HackerOne, therefore the following scenario is based around this platform.

2.1 Where to start

There is a multitude of tools (most of which I haven’t tried) that can
probably help with finding a vulnerability. That said, relying on tools
and skipping over fundamental understanding is not something I would

https://www.hackerone.com/sanctions-faq
https://hackerone.com/
https://www.bugcrowd.com/
https://www.intigriti.com/
https://www.microsoft.com/en-us/msrc/
https://bughunters.google.com/about/news
https://hackerone.com/ibb?type=team
https://ec.europa.eu/info/news/european-commissions-open-source-programme-office-starts-bug-bounties-2022-jan-19_en
https://ec.europa.eu/info/news/european-commissions-open-source-programme-office-starts-bug-bounties-2022-jan-19_en
https://bughunters.google.com/about/rules/4928084514701312/patch-rewards-program-rules
https://github.com/google/oss-fuzz/tree/master/projects
https://bughunters.google.com/about/rules/5122527111938048/research-paper-rewards-program-rules

22 Mgr. Jan Kvapil

recommend. For example, a report that consists of the output from a
static analysis tool won’t be accepted—a clear impact has to be shown and
discussed at a minimum. Information security is broad, therefore I would
suggest starting small and in an area, one is familiar with. However,
hacking is a constant process of refining one’s skills and learning about
new technologies, practices, etc. One of the first programs that I have
been reviewing was a web application written in PHP. I have dived into
PHP, and its documentation and started looking for the weak spots. The
ability to learn quickly and navigate through lots of materials at once
is beneficial—and soon interesting things can pop up (such as "types
juggling" in PHP).

To start safely, HackerOne provides a nice sandbox consisting of mul-
tiple vulnerable applications of various levels of difficulty. In case the
reader starts finding the first issues in a matter of hours or days he can
try starting hunting on a real program. It is worth reiterating that bug
bounty hunting is a delicate practice from the legal perspective and my
suggestion is to read the platform’s Terms and Conditions (ToC) carefully
this time.

2.2 Finding a program

In general, I see two approaches, on one hand, seasoned hackers are able
to work on multiple projects at once, especially if they prefer automation
over a manual review. On the other hand, some stick to a single program
for months or years. The first group benefits from automation and the
ability to catch the low-hanging fruits, the second one builds a much deeper
understanding of a given service—and the understanding pays off because
it is easier to showcase the impact of a vulnerability. Finding vulnerabilities
is not an easy task and starting with software or app that one is familiar
with gives a head start. There are multiple well-known public programs on
HackerOne, for example GitLab. The downside of public programs (from
the point of view of a hacker) is that many other hackers are working on
them already, which lowers the chances of finding an original bug (because
most programs do not pay off bounties for duplicate reports).

Once a program is chosen things start to get exciting—looking for a
security vulnerability can bring an adrenaline rush. However, similarly to
reading ToC, it is a necessity to carefully go through the program’s policy
and scope. The assets in scope can be targeted and hacked by the attacker.
The programs can whitelist the assets (i.e. the "In scope" section) in

https://www.php.net/manual/en/function.md5.php#123392
https://www.php.net/manual/en/function.md5.php#123392
https://ctf.hacker101.com/
https://www.hackerone.com/terms/general
https://hackerone.com/gitlab?type=team

54. KONFERENCE EUROPEN.CZ 23

multiple ways. For example, Curl only mentions a single asset in scope
and that is its repository on GitHub. Others provide a much broader
scope—consisting of raw IP ranges, links to binaries, etc. Programs can
tag the scopes with the technologies (at least the main ones) that the asset
is built upon, presumably to help the hacker direct the attention. Similarly,
some assets are explicitly out of scope and hacking them is prohibited.

Following the policy and staying within the scope is essential to re-
maining an ethical hacker. For example, this is an excerpt from GitLab’s
policy:

Any activities conducted in a manner consistent with this
policy will be considered authorized conduct and we will not
initiate legal action against you. If legal action is initiated by a
third party against you in connection with activities conducted
under this policy, we will take steps to make it known that your
actions were conducted in compliance with this policy.?

A policy can also contain slightly surprising clauses, such as this one
from PayPal’s program:

As a condition of participation in the PayPal Bug Bounty
Program, you hereby grant PayPal, its subsidiaries, affiliates
and customers a perpetual, irrevocable, worldwide, royalty-
free, transferrable, sublicensable (through multiple tiers) and
non-exclusive license to use, reproduce, adapt, modify, publish,
distribute, publicly perform, create derivative work from, make,
use, sell, offer for sale and import the Submission, as well as
any materials submitted to PayPal in connection therewith,
for any purpose. You should not send us any Submission that
you do not wish to license to us.

While understandable when viewed from the program’s side, similar
statements made me question, whether I would submit a report to such a
program.

2.3 Looking for a bug

After agreeing to the policy and understanding the scope one can finally
start hacking. The first thing is to get familiar with the program—is it a

2Emphasis mine

https://curl.se/
https://hackerone.com/curl?type=team
https://github.com/curl/curl
https://hackerone.com/paypal?type=team

24 Mgr. Jan Kvapil

web application? Then go ahead, register and start using it. The platforms
often maintain <username>@<platforms-domain> e-mail that is meant
to be used for such registration. The program can then easily monitor
and filter those accounts from the ones of the real users. Some programs
provide test account credentials at request or as a part of their policy. It is
important to understand that a bug in one program can fall into the won’t
fix category, but be a security vulnerability in a different context. The
goal of a hacker is to find a vulnerability and show its impact if exploited.
Of course, there is no single path how to find a bug. There are many tools
and resources that can help out and the pentesting, hacking and security
community comes with new ones often. For example:

e BurpSuite: well-known tool for web security and penetration testing,

e Payload All the Things: a list of various payloads such as Cross Site
Scripting payloads,

e Amass: a tool for network mapping of attack surfaces,
e sqlmap: tool for detecting SQL injections,

e HackerOne resources: a list of other tools categorized by their area
of interest.

While such tools can be of great help, one needs to be careful to
understand first what the tools do and how (again, complying with the
policy and scope is crucial). However, there are more basic tools that are
enough for starting out. Fluency in some kind of a shell program is at
the base level. Often, the first tool I use is the command-line curl—it
is great at testing out APIs. Next, the ability to script in languages like
Python goes well alongside that (combined with libraries such as pwntools).
Most of my proof of concepts take advantage of a simple Python script.
The necessary tool set depends on the target, but basic DevOps tactics,
for example spinning up multiple Docker containers, do come in handy.
Testing locally denial of service attacks is much more doable if a successful
attack crashes only a container and not the host system.

In general, the hacker does not need to be a coder in order to find
issues (e.g. information disclosure vulnerabilities can sometimes be found
by simply using the website and clicking around), but it empowers the
hacker greatly. That said, the current browsers already provide enough

https://portswigger.net/burp
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/OWASP/Amass
https://sqlmap.org/
https://www.hacker101.com/resources
https://docs.pwntools.com/en/stable/

54. KONFERENCE EUROPEN.CZ 25

information through developer tools that can be used to start investigating
the web traffic and look for weaknesses.

At this point, it is good to articulate the common phrase that the
attacker only needs to find a one way in. 1 want to stress this point because
while there are rules, one can still find quite unorthodox ways of gathering
meaningful information. Once I needed to learn, whether and how a target
uses a particular piece of software. Its own assets and domains did not
tell me much, but a quick Open Source Intelligence (OSINT) provided me
with an hour-long podcast from one of the lead developers of the target.
The podcast was meant to be interesting for other developers, but at the
same time, it has given me valuable information on how that particular
software is being utilized. A hacker needs to be creative and unorthodox
in his ways and the application of his skills. A piece of information is often
not harmful on its own but becomes when put into a mosaic of others.

2.4 Submitting a report

Once a bug is found the vulnerability disclosure report can be created.
Depending on the platform it has to contain the vulnerable asset (e.g. a
domain), type of weakness (e.g. buffer overflow) and its severity—which can
either be set directly (e.g. High) or calculated using the CVSS calculator.
Then the most valuable parts come, the proof of concept (PoC) and the
impact.

Depending on the program the reports are first read and triaged
by someone from the platform (in order to avoid spam) and only then
handed over to someone from the program or processed by the program
directly. Writing a report and communicating clearly with the program is
another skill set worth having for a hacker. It is not unheard of that the
communication within a report does not go smoothly. Also, the triager
might lack the particular skill set required for successfully exploiting
the vulnerability. Keeping the proof of concept succinct and clear is
wise. Ideally, I try to provide a single curl command that showcases the
vulnerability or a simple Python script. If possible (e.g. for some OSS
projects), I add a container with the required provisioning to minimize
the work for the triager. Some reporters create a screencast to give proof
of the vulnerability (and also provide the commands)—the triager then
does not need to necessarily recreate the issue but can triage it anyway.
Giving the right amount of details is non-trivial and the communication is
lacking, because waiting for a response several days or weeks is normal.

26 Mgr. Jan Kvapil

At this point, it is apparent where open-source projects benefit. Since
the hacker has access to the source code he can reference it directly. Or
even better, actually provide a working fix through the means of a patch.
The disclosure process can therefore be quicker. Worth mentioning are also
GitHub’s Security Advisories that allow collaboration of the maintainers
and the reporter on the fix together in a private branch.

A hacker has to be careful about his expectations. The program owners
can update the severity (e.g. lowering it from High to Low) or discard the
report completely by marking it as Informative. Such reports do not result
in any bounty, but at least do not harm the hacker’s reputation. Also,
the triage results vary across the programs. One of the vulnerabilities
I have reported was triaged as High, Low or disregarded as Informative
when reported to three different programs—one has to avoid frustration
and understand that the program owner is in charge. Sometimes, the
frustration pushes the hacker to try harder and escalate the previous issue
into something more severe, consequently, forcing the program owner to
reconsider the previous decision.

If the report is triaged, all communication goes well and the bug is fixed
one can expect to receive a bounty (after filling in the required paperwork
on the platform). The time between submitting the report and the payout
can be several weeks (though some programs pay an initial bounty right
after the triage). The overall experience heavily depends on the program
and can be a reason to stick to only a few programs or to move on to
another one.

2.5 Is bug bounty hunting worth it?

There are several positives to bug bounty hunting. The hacker can choose
her target. If there is a new technology that interests her, she can find a
program that uses it and start learning. Looking for vulnerabilities gives
a new perspective—quite different from the point of view of an ordinary
developer. The goal is to find a way in, misuse anything that is available,
and break things. There is no need to worry about the future deployment
of the tools, and scripts that are created along the way. It is a technical and
creative work that provides unbounded learning opportunities. Depending
on a program the bounties can be of a significant amount. Also, some
programs reward hackers with a swag or a Pro version of their services.
There are negatives as well. Staying on toes, and noting down any
suspicious behaviour all the time is tiring after a while. Finding a good

https://hackerone.com/reports/1212067
https://docs.github.com/en/enterprise-cloud@latest/code-security/repository-security-advisories/about-github-security-advisories-for-repositories

54. KONFERENCE EUROPEN.CZ 27

program that one enjoys exploring is not straightforward. Spending weeks
diving into a piece of software and not finding anything is not an experience
one can handle over and over again. A hacker is paid based on the value
she brings to the program (higher severity bugs are rewarded a bigger
bounty) not by hours—so, it is in the hands of the hacker, whether bug
bounty hunting is sustainable long-term.

Looking from the other side, is it worth it for a company to have a
bug bounty program? I can’t comment on the experience of a program
owner, especially concerning the time, effort and investment it takes to
run it. I can comment as someone with an experience of trying to build
something and also trying to break something. The inner incentives and
motifs are quite different. The developer is driven to make things work.
Finding an issue is a burden, not an achievement. Contrary, anything
out of the ordinary fuels the hacker’s curiosity. I can imagine a company
simulating the bug bounty environment internally—reward tickets that
report a security vulnerability, train developers in security and give them
dedicated time to go and break the company’s apps (preferably built by a
different team). Also, a company can organize a hackathon, where the sole
goal is to break its systems or create a team and participate in Capture the
Flag style of events. That said, internal employees are easily in conflict of
interests and therefore having a program hosted on a platform is a viable
option.

However, the least a company can do is to clearly specify on the home-
page or in the project’s README, how is a hacker supposed to contact the
owners in case they discover a security vulnerability. Surprisingly, even big
projects are lacking security contact for reporting security vulnerabilities.
Failing to provide such contact can either result in an unwanted public
disclosure or no disclosure at all.

Resources

The hacking community produces a lot of materials—reports, videos,
podcasts or blog posts. The amount of content can be quite overwhelming,
but reading and understanding the published reports and techniques is a
a great way how to hone one’s hacking skills.

Bi HackerOne hactivity: a list of all the disclosed reports on the platform,
to narrow it down take a look at @Qvakzz’s work on GitLab, which
I might revisit during the talk,

https://hackerone.com/hacktivity
https://hackerone.com/vakzz?type=user

Mgr. Jan Kvapil

Bi Capture the Flag writeups: another interesting list of techniques
used to circumvent the security and exploit a vulnerability.

®(John Hammond, LiveOverflow and STOK: hackers, educators and
content creators on various things related to hacking and bug hunting,

@ Bug Bounty Reports explained: a YouTube channel concerned with
explaining the disclosed reports,

@ The Bug Hunter’s Methodology and here: to keep up with growing
number of programs one benefits from a better methodology,

@ Bugcrowd’s LevelUp series: online conference targeting hackers and
security researchers,

@ dayzerosec: a podcast discussing the latest disclosed reports from all
the platforms.

https://ctftime.org/writeups
https://johnhammond.org/
https://liveoverflow.com/
https://www.stokfredrik.com/
https://www.youtube.com/c/BugBountyReportsExplained
https://www.youtube.com/watch?v=gIz_yn0Uvb8
https://www.youtube.com/watch?v=p4JgIu1mceI
https://www.youtube.com/c/Bugcrowd/playlists
https://dayzerosec.com/about.html

BUNGLE IN THE JUNGLE: ANALYSING THE
SECURITY CERTIFICATIONS LANDSCAPE

Adam Janovsky, Petr Svenda, Jan Jancar, Jiri
Michalik, Stanislav Bobon

Abstract

Timely notification of end-users about a vulnerability found and the corresponding
fix typically relies on a vendor or public sources like vulnerability databases.
Such notifications may fail even for highly sensitive and certified devices, as
demonstrated, e.g., by that of the Estonian government about critical ROCA
cryptographic vulnerability [1].

To facilitate an automatic vulnerability notification of (potentially) impacted
certified composite products, we build a dependency graph of more than 10
thousand items certified under the Common Criteria (CC) and FIPS 140-2/3
schemes. Furthermore, we trained a classifier (= 90% accuracy) for pairing
certified products with the corresponding entries in the CVE vulnerability database.
Both tools work in an unsupervised manner, allowing for predictions on newly
introduced vulnerabilities and certificates. Our dataset is further qualitatively
evaluated using five high-profile past vulnerabilities — demonstrating our ability
to quickly identify the impacted certificates (including previously omitted cases
like Estonia’s eID) and possibility to proactively identify set of certificates that
may affect a composite product in the future.

While CC' certification is primarily focused on the evaluation of security
claims, it shall also improve the practical product’s security. By correlating the
achieved security assurance levels with the severity and time of past vulnerabilities,
we identify that some security assurance requirements of the certificate are
strong predictors for the expected number and severity of the vulnerabilities the
certificate is likely to suffer from in the future. Among others, AVA_VAN (assumed
attacker potential) and ALC_TAT (tools and techniques) have the highest inverse
correlation with the number and severity of the expected vulnerabilities. We also
reveal that majority of certificate maintenance updates that are subsequent to
exposed vulnerabilities do not address these vulnerabilities explicitly. Based on
the issues encountered in processing certificates issued over the past 25 years, we

30 A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

create a list of recommendations on how to improve the newly issued certificates.
The open tools and database of continuously updated results are available at
https: //seccrets. org.

1 Introduction

The security certification frameworks Common Criteria (CC) [2] and
FIPS-140 [3] were introduced to evaluate the security of products and
provide increased assurance to customers. The schemes typically offer
multiple certification levels (e.g., Evaluation Assurance Level for CC) with
increasing requirements and corresponding scrutiny for the claims made
about the certified item. The increased scrutiny comes at a non-trivial
cost, both in time to obtain the certificate (typically months or even years)
and financial cost (hundreds of thousands of dollars or more) [4].

Despite such effort, serious security vulnerabilities were discovered later
in the products certified even to high levels [5, 1, 6, 7|, showing a gap
between the intended and actual security. Due to the high certification
costs, a vulnerability missed by the certification process tends to persist
for number of years as vendor is less motivated to make changes in the
product which would require re-certification — contributing to increased
impact on end-users. Finally, notification of the users about a vulnerability
found is typically left up to the vendor of the certified item. This is un-
necessary as the item is quite precisely specified and identified (including
its components, if being composite) during the certification process (e.g.,
Target of Evaluation in Security Target documents in CC). An automated
notification would be possible if the certificate and referenced parts are
uniquely identified and if such labeling is consistently used also in vulnera-
bility database(s) — unfortunately, no such complete mapping exists today.
This paper provides such mapping and performs related analyses.

Additionally, a simple question like Is the certification improving the
security of an actual product in correlation to the certification level? seems
to be difficult to answer — partially due to the complex task of measuring
the security in general, but also due to burdensome to process, insufficient
or missing input data for such analysis. But without the understanding
of the certification efficiency, the certification procedure may become a
burden preventing innovation from smaller companies due to its high cost
rather than security improvement, and the well-meant improvements are
ad-hoc rather than data-based.

https://seccrets.org

54. KONFERENCE EUROPEN.CZ 31

Previous works unveiling the real situation of certification schemes were
based on individual studies (e.g., products affected by specific vulnerability)
[8], manual analysis on the small fraction of certificates [9] or qualitative
analysis of the actual standards [10]. We instead focus on the extraction
of the analytical information directly from the public documents of all
the certified products and their correlation with other relevant sources of
information like vulnerability databases.

We leverage the resulting processed dataset to provide insight into the
state of the ecosystem, starting from the general trends in the certification
that runs for more than two decades, over empirical evidence of the security
improvement achieved (when measured by the number and severity of the
vulnerabilities found) to providing tools for vulnerability impact assessment
and early notification of the product end-users.

While attempted, a reliable and complete mapping between certified
products and records in other sources like CVE vulnerability database is not
fully available, making it difficult to establish which of the publicly disclosed
vulnerabilities are relevant to a particular certified product. For example,
ROCA vulnerability (CVE-2017-15361) in RSA keypair generation directly
affecting more than a hundred CC certificates is listed in the CVE database
as a vulnerability in Trusted Platform Module firmware with 130 affected
CPE configurations (mostly desktop and laptops), but none of it being
the certified CC item. Yet, we show that many certified devices are, in
fact, affected.

In this paper, we answer the following research questions: RQ1: Can
certified items automatically be mapped to records in CVE vulnerability
database? RQ2: What is the practical impact of increased security
assurance levels on the expected number and severity of the products’
vulnerabilities? RQ3: How are certified items referencing and affecting
each other?

We address these problems, delivering the following contributions:

e Systematic analysis of inter-certificates references in all certificates
issued under Common Criteria and FIPS 140 schemes using a newly
developed open-source framework. The resulting dependency graph
provides means for automated vulnerability notification and insight
into the certification ecosystems for the past 25 years.

e Quantitative analysis of the real-world security impact of the differ-
ent certification security levels based on the automatic pairing of

32 A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

certified devices with the corresponding records in CVE vulnerability
database.

e Qualitative study of improvements in vulnerability assessment for
security researchers gained by the developed framework based on the
five real-world noteworthy vulnerabilities found in certified products.

The open-source toolchain, manually labeled training datasets, vulner-
ability notification feature and all results continuously updated with newly
issued certificates are available at https://seccrets.org. Note that the
Europen paper merely provides the introduction, state of the art, and the
methodology. The complete results, as well as the practical demonstration
of our work, will be part of the presentation and are not included in the
printed version of the paper, for they are still partially a work in progress.

2 Related work

We start with a short description of the Common Criteria certification
framework. After doing so, we turn our attention to the existing work that
is most relevant for their analysis.

2.1 CC framework description

In the Common Criteria certification scheme, any security-related product
can be certified. The primary focus of the certification is the production
process. The assumption is that if the process is right, the products will
likely be secure as well. Prior to certification, the applicant chooses security
functional requirements (SFR) and security assurance requirements (SAR)
to cohere to. Preferably, the applicant chooses from an already established
list of protection profiles (PP) that bind typical use-cases (e.g., smart
cards) to their SFR and SAR specifications. During the certification, an
independent evaluator party verifies the conformance of the device to
this specification. Depending on the chosen protection profile of security
requirements, the device can be certified on multiple evaluation assurance
levels (EAL). The following documents that accompany the certification
process and /or are publicly available were used for our analysis:

e Security Target document — provided by the vendor (or on behalf)
to the evaluation facility, specifies the certified product.

https://seccrets.org

54. KONFERENCE EUROPEN.CZ 33

e Certification Report — issued by certification authority member (e.g.,
French ANSSI), after checks by an accredited evaluation facility/lab
(e.g., Serma Technologies).

e Maintenance Report(s) — documenting smaller changes in an already
certified product that do not require full re-certification.

e Protection Profiles documents — template for specific functionality,
provided by a single vendor or collaborative.

e CSV/HTML pages with some additional metadata, summary docu-
ments.

2.2 Certification frameworks analysis

We divide the studied papers into three different categories: (i) papers
that identify problems in certification schemes, often suggesting immedi-
ate improvements; (ii) papers that try to make sense of the certification
process, often case-study driven; (iii) more recent papers that work to-
wards automated and transparent certification, or automated processing
of security-related documents.

Most of the research on CC and FIPS certification schemes builds
on individual case studies that expose the perks of these schemes. This
also limits the possible findings, as the authors are mostly steered by
intuition, lacking the support of large-scale data analysis. An exception
to this is a study [9] that exploits data-driven analysis of CC scheme,
parsing metadata from its website. This work, however, omits the analysis
of the pdf documents and resorts to manual labour when examining
vulnerabilities, being limited only to a small portion of the dataset.

Perks and problems of certification

In [11], Harn exposes the problems that the CC had already in 2004.
Eight years later, Murdoch et al. [12] discuss why both CC and FIPS-
140 fail, pointing to the lack of transparency, a problem that prevails.
More of a political perspective is taken in [13], describing the weaknesses
of international standards that rely on national alliances, which may
not last forever. Work [10] studies the intriguing fact that CC requires
formal models to achieve high EALSs, however, formal verification of the
implementation is not required, despite the recent advances in the field.

34 A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

Many problems to be articulated in our work are also mentioned in user
study [14] of 29 users experienced in work with NIST cryptographic
standards and validation programs.

Understanding certification

To many, employed certification schemes may appear so complex and full
of nontransparent limitations that it is difficult to understand how one
can obtain such certification, and what the implications for the certified
device are. This is tackled by several papers that explain the process of
certification [15] or provide guidance on how to approach it [16, 17, 18, 19,
20]. Some works treat separate product domains for which they provide
support (e.g., IoT devices) [21, 22, 23, 24|. Also, an interesting study [25]
dissects the Windows version that acquired EAL4 certification in 2004.
A novel piece of research recently studied the costs introduced by securing
software, focusing on Common Criteria as well [26].

Automated processing of cryptography-related documents

Here, we limit our attention to recent natural language processing (NLP)
studies that could be translated to the domain of security certificates.
Additionally, we mention some papers devoted to linking computer systems
to known vulnerabilities from National Vulnerability Database (NVD).

We believe that much precious information is hidden in the certifica-
tion reports. More powerful approach than regular expressions could be
leveraged to extract the context from these documents. For instance, it
would be possible to approach recent advances in NLP as already suggested
for FIPS-140 by [27], or performed on privacy policy documents in [28].
A study from 2014 [29] attempts to automatically identify security-related
sentences and security requirements from natural language artifacts using
machine learning.

In our work, we assumed that a properly processed CPE database and
perfect matching between CVE and CPE database is achieved by NIST.
But even this is an active area of research, as demonstrated by works
that try to make this process more efficient, less erroneous, and more
complete [30, 31, 32].

54. KONFERENCE EUROPEN.CZ 35

3 Data processing and methodology

In this section, we describe the methodology and tooling of our analytical
work. To answer our research questions, we devise surrogate metrics that
we collect from certification documents and afterward evaluate. We strive
to make our methods fully automated, at the cost of possible false positives
and false negatives. We hope that this is positively outweighed by scaling
our research to all available certificates. Wherever possible, we manually
evaluate the precision of our methods, always report the most conservative
numbers, and carefully examine the positive findings.

3.1 Tooling

As a part of our research, we release an open-source tool ! written in
Python for analysis of both CC and FIPS 140 certificates. We are also
continuously processing all available data from both CC and FIPS 140
schemes, generating daily snapshots of their landscape. These temporal
trends, as well as information about individual certificates, are displayed
on our website seccerts.org, where one can browse through our daily
updated datasets and analyses. The users can also opt-in for receiving
notifications about certificates that are subject of their interest, e.g., when
a new vulnerability is identified that likely affects a given certificate.

3.2 Dataset processing

The tooling outlined above is used to parse html source of CC [33] and
FIPS [34] websites. These webpages are crawled for the lists of certificates
containing various metadata (category of product, security level, etc.),
which are subsequently downloaded and processed. From these lists, hy-
perlinks to all pdf certification documents are recovered and the respective
files downloaded. We then convert these documents to text files and apply
three processing steps:

1. We leverage regular expressions to extract features from the docu-
ments. Among others, we search for security assurance requirements,
connections to other certified products, clues of existing vulnerabili-
ties, evaluation laboratories, or employed cryptographic primitives.

lgithub.com/crocs-muni/sec-certs

seccerts.org
github.com/crocs-muni/sec-certs

36 A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

2. We correlate our dataset with the National Vulnerability Database
(NVD) to identify potentially vulnerable certificates.

3. We normalize the existing certificate IDs to build a graph of depen-
dencies between the certified devices (even across the schemes).

The exhaustive list of extracted features is depicted in Table 1. The
CC dataset is also enhanced with processed maintenance updates and
protection profiles. In total, we have analyzed 4 170 CC certificates and
4937 FIPS-140 certificates. Notably, the certification documents were not
designed and written with automated processing in mind. Instead, they
are manually written by humans for humans. This complicated the feature
extraction, as we faced many inconsistencies along the way. The rest of
this section conveys the technical facets of vulnerability matching, feature
extraction, and dependency graphs.

3.3 Matching certificates to National Vulnerability
Database

We designed a classifier that maps each of the certificates to a list of
vulnerabilities that likely affect it. In prior work [9], some small fraction of
certificates was manually assigned with CVEs and their characteristics were
further studied. In contrast, our method is fully automated and works with
previously unseen certificates or vulnerabilities. We deploy the matching
on our website to perform daily scans for new vulnerabilities. Our main
goal is to study the relationship between exposure to vulnerabilities and
the process of certification. In other words, what aspects of certification
(e.g., security level, the extent of automated tests) have an influence on the
number of vulnerabilities (and their severity) the certificate suffers from?

Classifier design

Each vulnerability record in the NVD database is associated with a list
of vulnerable product configurations. These configurations are shaped
as Common Platform Enumeration (CPE) records. Human experts craft
the lists of vulnerable CPEs for all vulnerabilities. Assuming that these
records are created flawlessly, knowing CPE of a product, one can traverse
all vulnerabilities to obtain those that affect the product. Further in the
text, we assume that the mapping between CPEs and CVEs is perfect,
i.e., that each CVE record contains all (but no more) CPE records that

54. KONFERENCE EUROPEN.CZ 37

correspond to the vulnerable configurations. For more information about
CVE and CPE syntax and semantics, we refer the reader to [35].
Leveraging this assumption, we create a classifier that assigns CPEs to
the certified products, and CVEs are then reconstructed deterministically.
CPE is a flat data structure, a list of fields related to the given platform.
Among others, it contains the self-explanatory fields <vendor>, <product>,
<version>. Apart from those, the CPE dataset released by NIST [36]
also often contains the human-readable title of the product. To match
the certified devices to CPEs, we measure the string similarity between a
certificate heading (i.e., name) and candidate CPE records that are carefully
pre-selected. To measure the string similarity, we utilize Levensthein
distance. The threshold for declaring a match is set dynamically to obtain
results that achieve 90% precision, where a manually labeled subset of the
data is used for external evaluation. While higher precision is possible,
it asymmetrically decreases the recall, i.e., the number of matched CPE
records. Before including a CPE record into a list of candidates to match
a given certificate (the string similarity is computed only on promising
candidates), we impose the following set of conditions that must hold:

e The CPE record must be at least 5 characters long (short CPEs lead
to 100% string similarity)

e The vendor of the certificate must match the vendor CPE

e The version of the certificate must be contained in the version string
of the CPE or vice versa. E.g., matching a certified product of
version 5.1.2 to CPE record of version 5.1. is allowed.

Classifier evaluation

Once the model was trained, we randomly sampled 200 certificates and
manually labeled the obtained CPE matches. This task was done indepen-
dently by a pair of experts, and the conflicting instances were revisited until
a consensus was reached.The required similarity score was then increased
to 100% to achieve ~ 90% precision of classification. Given a certificate
and the matched CPE records, precision denotes the probability that the
CPE record is a true positive, i.e., that it corresponds to the certificate.
Note that we could not evaluate the recall, as it is difficult to manually
obtain the complete list of CPE records for each of the certificates. For
that reason, our estimates about the number of vulnerabilities form a

38 A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

conservative lower bound, with probably more CPEs and CVEs related to
the certified devices.

Caveats and limitations

Along the way, we identified aspects that can be improved to allow for
simple, unambiguous mapping between certificates and vulnerabilities.
The main message is that each of the certified products should be assigned
with its own CPE (or some other unambiguous identifier) on creation. This
would solve numerous problems. For instance, we needed to normalize
vendor names of both certificates and CPEs, as some are given in the form
of abbreviation (e.g., CPE records contain Hewlett Packard as a vendor,
while certificates merely use HP). The same problem also concerns product
names (e.g., Internet Explorer, IE). Also, many CPEs listed in the NVD
are actually missing from the official CPE dataset, and some are missing
a version identifier. Furthermore, a small portion (6.8% as of September
2021) of vulnerabilities does not list any vulnerable CPEs. A manual
inspection confirmed that these represent rather exotic vulnerabilities
unlikely to affect the certificate devices.

We attempted to advance our approach by matching certificate names
directly to the vulnerability descriptions to bypass these problems, but
this fell short of its promise, delivering deteriorated performance.

3.4 Certificate feature extraction

Using expert knowledge, we have defined 400 regular expressions to extract
natural text keywords from the certification documents. These features
can be divided into several categories, as listed in Table 1. The complete
list of regular expressions can be examined directly in the source code [37].
In CC, we traversed both the certification report and the security target
documents to match these expressions.

3.5 Extraction of certificate references

The list of other certified products referenced from the specific certificate
is vital information allowing us to assess the products impacted with newly
found vulnerability. For example, electronic identity cards utilizing a
platform built atop the certified integrated circuit with fresh vulnerability
shall be assessed for impact. The complete graph of all references among all

54. KONFERENCE EUROPEN.CZ 39

Feature category Framework
Certificate IDs (17 distinct authorities) CcC
Employed protection profiles CC
Referenced standards (e.g., ISO-27001) | CC, FIPS
Achieved security level CC, FIPS
SAR, FAR CC
CC Claims (objectives, threats, ...) CcC
Javacard features (e.g., Java version) CC, FIPS
Employed cryptographic algorithms CC, FIPS
Cryptographic libraries (e.g., GnuTLS) | CC, FIPS
Applied defenses (e.g., timing attacks) CC, FIPS
Vulnerabilities (CVE-XXXX-YYYY) CC, FIPS

Table 1: Features extracted from the certification documents.

certified products would allow to automatically identify all other affecting
directly or transitively the specified one, all affected by the specified one,
and provide insight into the dependency complexity of such graph. But
as the current certification procedures require no explicit software and
hardware “bill of material (BOM)”, such a graph is not existing and has to
be built from the publicly available certification documents.

Every certificate is assigned its own supposedly unique but structurally
different number under the national issuing scheme (e.g., BSI-DSZ-CC-
1169-2021, NSCIB-CC-15-66461, or Rapport de certification 2013/42). The
certificate id always contains a component with an incremental number
(may reset between years), mostly year of issuance, sometimes additional
modifiers for the certification or maintenance reports (CR/MR), version,
or country-specific strings (BSI, NSCIB, ANSSI). Importantly, CC is not
even providing authoritative pairing of certified product and its id in
public documents, nor a list of all referenced certificates. Additionally,
the references are human-written and frequently contain errors (around
5% of all references) — missing structural parts (e.g., a year or a version),
containing typos or referencing via product name instead. To build a
pairing and list of all referenced certificates, one must parse the free-form
documents and attempt to correct and normalize possible typos.

We build the graph of all references using the following steps:

40

A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

1. Extraction of candidate certificate id using set of regular expressions

manually built based on the naming structures for all current and
past certificate authoring members.

. Parsing of the certificate front page (if present) to establish the id

of a given certificate. If not present, other heuristics (most frequent
candidate, occurrence in certificate file name) are used.

. All extracted certificate ids are corrected for the typical errors and

typos occurring for given naming scheme and transformed to a
normalized form using a set of manually built, predefined rules and
all ids collected so far, allowing to completion of missing elements
like “BSI-DSZ-CC-1137-V2” to “BSI-DSZ-CC-1137-V2-2021".

In total, we found 6166 certificate identifiers for the Common Criteria

of 16 certificate issuing countries, following 24 different structural patterns
(some countries changed the numbering scheme over time).

3.6 Limitations

Our analysis comes with several limitations, mostly due to incomplete and
noisy input data used. Below, we list the most important ones and give
short discussion about the impact of limitations on the presented results.

e Noisy base data. The certification documents are written primarily

by humans for other humans and without automatic processing in
mind, resulting in an unstructured, ambiguous, and inconsistent
primary source of the data. Typos are found even in the critical
elements like certificate identification. We attempt to heuristically
correct some using redundant input sources (e.g., pdf and csv),
expected data structure (e.g., year in certificate id) and manually
investigating inconsistencies (e.g., same certificate id assigned to
multiple certificates). As a result, some certificates may be incorrectly
classified and matched. But based on the manual investigation of
a randomly selected subset of certificates, we believe the errors are
generally acceptably low and do not impact overall conclusions.

Only public data is processed. Additional documents are created
during the certification process, which remains confidential between
a vendor, evaluation facility, or certification body. Our analysis is
missing such additional metadata, resulting in fewer connections

54. KONFERENCE EUROPEN.CZ 41

in the graph of references and vulnerabilities evaluated during the
(re-)certification process.

Only part of the product is certified. A security target docu-
ment specifies the boundaries of the evaluated product (Target of
Evaluation, ToE), which typically does not cover the whole product
or all configuration options. A vulnerability found in the parts ex-
cluded from ToE will likely be paired to the certificate, while formally
not relevant to the certified sub-part, introducing inaccuracies in the
results presented. While clearly classification error when only ToE
is strictly considered, we believe that imprecise such result generally
matches the expectations of ordinary end-users using the certified
product. Especially given the anecdotally evidence that some ven-
dors incrementally limit the ToE scope in response to vulnerability
found during the evaluation instead of fixing it. Additionally, one
can expect that somewhat comparable level of quality of product
parts despite some being excluded from the ToE.

Not all vulnerabilities are reported in CVE database. Not
all vulnerabilities found are listed in CVE database and/or properly
referenced to the product’s platform CPE. As a result, more vulner-
abilities likely exist for every certified product than matched by our
analysis. We conjecture that the rate of unreported vulnerabilities is
comparable among the products certified in the same certification
category and do not compare between the categories.

References

(1]

2]

Matus Nemec et al. ,,The Return of Coppersmith’s Attack: Practical
Factorization of Widely Used RSA Moduli“. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. ACM,
2017, pp. 1631-1648. DOI: 10.1145/3133956.3133969. URL:
https://doi.org/10.1145/3133956.3133969.

Common Criteria for Information Technology Security Evaluation.
version 3.1, revision 5. [cit. 2020-09-03]. Available from
https://www.commoncriteriaportal.org/cc/. 2020.

https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3133956.3133969
https://www.commoncriteriaportal.org/cc/

42

3]

(4]
]

(6]

7]

18]

9

A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

National Institute of Standards and Technology (NIST). Security
Requirements for Cryptographic Modules. |cit. 2020-09-03]. Available
from
https://csrc.nist.gov/publications/detail/fips/140/2/final.
2001.

Lightship security. FAQ on Common Criteria. Available from
https://lightshipsec.com/common-criteria/. 2022.

Gunnar Alendal, Stefan Axelsson, and Geir Olav Dyrkolbotn. ,,Chip
chop — smashing the mobile phone secure chip for fun and digital
forensics“. en. In: Forensic Science International: Digital Investigation
37 (July 2021), p. 301191. 1SSN: 26662817. DOI:
10.1016/j.£fsidi.2021.301191. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S2666281721000998
(visited on 12/15/2021).

Jan Jancar et al. ,Minerva: The curse of ECDSA nonces; Systematic
analysis of lattice attacks on noisy leakage of bit-length of ECDSA
nonces“. In: JACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.4 (2020),
pp. 281-308. poI: 10.13154/tches.v2020.i4.281-308. URL:
https://doi.org/10.13154/tches.v2020.14.281-308.

Daniel Moghimi et al. ,,TPM-FAIL: TPM meets Timing and Lattice
Attacks”. In: 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020. Ed. by Srdjan Capkun and Franziska Roesner.
USENIX Association, 2020, pp. 2057-2073. URL: https://www.usenix.
org/conference/usenixsecurity20/presentation/moghimi-tpm.

Shaanan N. Cohney, Matthew D. Green, and Nadia Heninger.
,Practical State Recovery Attacks against Legacy RNG
Implementations®. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’18.
Toronto, Canada: Association for Computing Machinery, 2018,

pp. 265-280. 1SBN: 9781450356930. DOI: 10.1145/3243734.3243756.
URL: https://doi.org/10.1145/3243734.3243756.

Samuel Paul Kaluvuri, Michele Bezzi, and Yves Roudier. ,,A
Quantitative Analysis of Common Criteria Certification Practice®. In:
Trust, Privacy, and Security in Digital Business. Vol. 8647. Series Title:
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2014, pp. 132-143. 1sBN: 978-3-319-09769-5
978-3-319-09770-1. por: 10.1007/978-3-319-09770-1_12. URL:
http://link.springer.com/10.1007/978-3-319-09770-1_12 (Visited
on 12/14/2021).

https://csrc.nist.gov/publications/detail/fips/140/2/final
https://lightshipsec.com/common-criteria/
https://doi.org/10.1016/j.fsidi.2021.301191
https://linkinghub.elsevier.com/retrieve/pii/S2666281721000998
https://linkinghub.elsevier.com/retrieve/pii/S2666281721000998
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1007/978-3-319-09770-1_12
http://link.springer.com/10.1007/978-3-319-09770-1_12

54. KONFERENCE EUROPEN.CZ 43

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bernhard Beckert, Daniel Grahl, and Sarah Grebing. ,Mind the Gap:
Formal Verification and the Common Criteria (Discussion Paper)®. In:
VERIFY@IJCAR. 2010.

J. Hearn. ,Does the common criteria paradigm have a future?* en. In:
IEEE Security & Privacy Magazine 2.1 (Jan. 2004), pp. 64-65. 1SSN:
1540-7993. por: 10.1109/MSECP.2004.1264857. URL:
http://ieeexplore.ieee.org/document/1264857/ (visited on
12/14/2021).

Steven Murdoch, Mike Bond, and Ross J. Anderson. ,,How Certification
Systems Fail: Lessons from the Ware Report“. In: IEEE Security &
Privacy Magazine (2012), pp. 1-1. 1ssN: 1540-7993. poI:
10.1109/MSP.2012.89. URL:
http://ieeexplore.ieee.org/document/6231616/ (visited on
12/14/2021).

Jan Kallberg. ,,The Common Criteria Meets Realpolitik: Trust,
Alliances, and Potential Betrayal“. In: IEEE Security ¢ Privacy
Magazine 10.4 (July 2012), pp. 50-53. 1sSN: 1540-7993. DoI:
10.1109/MSP.2012.29. URL:
http://ieeexplore.ieee.org/document/6148206/ (visited on
12/16/2021).

Julie Haney et al. Organizational views of NIST cryptographic standards
and testing and validation programs. Tech. rep. NIST IR 8241.
Gaithersburg, MD: National Institute of Standards and Technology, Dec.
2018, NIST IR 8241. po1: 10.6028/NIST.IR.8241. URL:
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8241.pdf
(visited on 12/15/2021).

John Tierney and Tony Boswell. ,,Common Criteria: Origins and
Overview*. In: Smart Cards, Tokens, Security and Applications. Cham:
Springer International Publishing, 2017, pp. 193—216. I1SBN:
978-3-319-50500-8. po1: 10.1007/978-3-319-50500-8_8. URL:
https://doi.org/10.1007/978-3-319-50500-8_8.

Daniel Mellado, Eduardo Fernandez-Medina, and Mario Piattini. ,,A
Common Criteria based security requirements engineering process for
the development of secure information systems®. en. In: Computer
Standards & Interfaces 29.2 (Feb. 2007), pp. 244-253. 1ssN: 09205489.
DOI: 10.1016/j.¢cs1.2006.04.002. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0920548906000511
(visited on 12/16,/2021).

https://doi.org/10.1109/MSECP.2004.1264857
http://ieeexplore.ieee.org/document/1264857/
https://doi.org/10.1109/MSP.2012.89
http://ieeexplore.ieee.org/document/6231616/
https://doi.org/10.1109/MSP.2012.29
http://ieeexplore.ieee.org/document/6148206/
https://doi.org/10.6028/NIST.IR.8241
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8241.pdf
https://doi.org/10.1007/978-3-319-50500-8_8
https://doi.org/10.1007/978-3-319-50500-8_8
https://doi.org/10.1016/j.csi.2006.04.002
https://linkinghub.elsevier.com/retrieve/pii/S0920548906000511
https://linkinghub.elsevier.com/retrieve/pii/S0920548906000511

44

[17]

18]

[19]

20]

21]

22]

23]

A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

Debra S Herrmann. Using the Common Criteria for IT security
evaluation. English. Boca Raton: Auerbach Publications, 2003. 1SBN:
978-0-8493-1404-9 978-1-4200-3142-3.

M. Razzazi et al. ,,Common Criteria Security Evaluation: A Time and
Cost Effective Approach®. In: 2006 2nd International Conference on
Information & Communication Technologies. Vol. 2. Damascus, Syria:
IEEE, 2006, pp. 3287-3292. 1sBN: 978-0-7803-9521-3. poI:
10.1109/ICTTA.2006.1684943. URL:
https://ieeexplore.ieee.org/document/1684943/ (visited on
12/16/2021).

Monika Vetterling, Guido Wimmel, and Alexander Wisspeintner.
»Secure systems development based on the common criteria: the PalME
project®. en. In: ACM SIGSOFT Software Engineering Notes 27.6 (Nov.
2002), pp. 129-138. 1SsN: 0163-5948. poI: 10.1145/605466.605486. URL:
https://dl.acm.org/doi/10.1145/605466.605486 (visited on
12/16/2021).

Andrzej Biatas. ,,Patterns Improving the Common Criteria Compliant
IT Security Development Process”. In: Dependable Computer Systems.
Vol. 97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1-16.
ISBN: 978-3-642-21392-2 978-3-642-21393-9. por1:
10.1007/978-3-642-21393-9_1. URL:
http://link.springer.com/10.1007/978-3-642-21393-9_1 (visited
on 12/16/2021).

Dariusz Rogowski. ,,Software Support for Common Criteria Security
Development Process on the Example of a Data Diode*. In: Proceedings
of the Ninth International Conference on Dependability and Complex
Systems DepCoS-RELCOMEX. June 30 — July 4, 2014, Brundw,
Poland. Cham: Springer International Publishing, 2014, pp. 363-372.

Andrzej Bialas. ,,Common Criteria Related Security Design Patterns—
Validation on the Intelligent Sensor Example Designed for Mine
Environment®. en. In: Sensors 10.5 (Apr. 2010), pp. 4456-4496. 1SSN:
1424-8220. por1: 10.3390/s100504456. URL:
http://www.mdpi.com/1424-8220/10/5/4456 (visited on 12/16,/2021).

Samuel Paul Kaluvuri, Michele Bezzi, and Yves Roudier. ,,Bringing
Common Criteria Certification to Web Services“. In: 2013 IEEE Ninth
World Congress on Services. Santa Clara, CA, USA: IEEE, June 2013,
pp. 98-102. 1SBN: 978-0-7695-5024-4. DOI: 10.1109/SERVICES.2013.17.
URL: http://ieeexplore.ieece.org/document/6655681/ (visited on
12/16/2021).

https://doi.org/10.1109/ICTTA.2006.1684943
https://ieeexplore.ieee.org/document/1684943/
https://doi.org/10.1145/605466.605486
https://dl.acm.org/doi/10.1145/605466.605486
https://doi.org/10.1007/978-3-642-21393-9_1
http://link.springer.com/10.1007/978-3-642-21393-9_1
https://doi.org/10.3390/s100504456
http://www.mdpi.com/1424-8220/10/5/4456
https://doi.org/10.1109/SERVICES.2013.17
http://ieeexplore.ieee.org/document/6655681/

54. KONFERENCE EUROPEN.CZ 45

[24]

[25]

[26]

[27]

28]

[29]

(30]

31]

Sooyoung Kang and Seungjoo Kim. ,How to Obtain Common Criteria
Certification of Smart TV for Home IoT Security and Reliability“. en.
In: Symmetry 9.10 (Oct. 2017), p. 233. 1sSN: 2073-8994. DOI:
10.3390/sym9100233. URL:
http://www.mdpi.com/2073-8994/9/10/233 (visited on 12/16,/2021).

J.S. Shapiro. ,,Understanding the windows EAL4 evaluation®. en. In:
Computer 36.2 (Feb. 2003), pp. 103—105. 1ssN: 0018-9162. por:
10.1109/MC.2003.1178059. URL:
http://ieeexplore.ieee.org/document/1178059/ (visited on
12/16,/2021).

Elaine Venson et al. ,,Costing Secure Software Development: A
Systematic Mapping Study“. en. In: Proceedings of the 14th
International Conference on Availability, Reliability and Security.
Canterbury CA United Kingdom: ACM, Aug. 2019, pp. 1-11. 1sBN:
978-1-4503-7164-3. poI1: 10.1145/3339252.3339263. URL:
https://dl.acm.org/doi/10.1145/3339252.3339263 (Visited on
12/16,/2021).

Apostol Vassilev. ,BowTie-A deep learning feedforward neural network
for sentiment analysis®“. In: International Conference on Machine
Learning, Optimization, and Data Science. Springer. 2019, pp. 360-371.

Hamza Harkous et al. ,Polisis: Automated Analysis and Presentation of
Privacy Policies Using Deep Learning®. In: 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 531-548. 1SBN: 978-1-939133-04-5. URL:
https://www.usenix.org/conference/usenixsecurity18/
presentation/harkous.

Maria Riaz et al. ,Hidden in plain sight: Automatically identifying
security requirements from natural language artifacts*. In: 2014 IEEE
22nd International Requirements Engineering Conference (RE). 2014,
pp. 183-192. por1: 10.1109/RE.2014.6912260.

Daniel Tovarhak, Lukas Sadlek, and Pavel Celeda. ,»Graph-Based CPE
Matching for Identification of Vulnerable Asset Configurations®. In: 2021
IFIP/IEEE International Symposium on Integrated Network
Management (IM). 2021, pp. 986-991.

Emil Wareus and Martin Hell. ,Automated CPE Labeling of CVE
Summaries with Machine Learning“. In: Detection of Intrusions and
Malware, and Vulnerability Assessment. Ed. by Clémentine Maurice
et al. Cham: Springer International Publishing, 2020, pp. 3—22. ISBN:
978-3-030-52683-2. DOI: 0.1007/978-3-030-52683-2_1.

https://doi.org/10.3390/sym9100233
http://www.mdpi.com/2073-8994/9/10/233
https://doi.org/10.1109/MC.2003.1178059
http://ieeexplore.ieee.org/document/1178059/
https://doi.org/10.1145/3339252.3339263
https://dl.acm.org/doi/10.1145/3339252.3339263
https://www.usenix.org/conference/usenixsecurity18/presentation/harkous
https://www.usenix.org/conference/usenixsecurity18/presentation/harkous
https://doi.org/10.1109/RE.2014.6912260
https://doi.org/0.1007/978-3-030-52683-2_1

46

32]

[33]
[34]

[35]

(36]

[37]

A. Janovsky, P. Svenda, J. Jancar, J. Michalik, S. Bobon

Luis Alberto Benthin Sanguino and Rafael Uetz. ,,Software Vulnerability
Analysis Using CPE and CVE*. In: arXw:1705.05347 [cs] (May 2017).
arXiv: 1705.05347. URL: http://arxiv.org/abs/1705.05347 (visited
on 12/15,/2021).

CC. Common Criteria Portal. Available from
commoncriteriaportal.org/. 2022.

NIST. Computer security resource center. Available from
https://csrc.nist.gov. 2022.

David Waltermire et al. The technical specification for the security
content automation protocol (SCAP) version 1.3. Tech. rep. NIST SP
800-126r3. Gaithersburg, MD: National Institute of Standards and
Technology, Feb. 2018, NIST SP 800-126r3. pDoTI:
10.6028/NIST.SP.800-126r3. URL: http:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
126r3.pdf (visited on 12/16/2021).

NIST. National Vulnerability Database - Data Feeds. Available from
https://nvd.nist.gov/vuln/data-feeds. 2022.

Adam Janovsky et al. Sec-certs GitHub repository: Examined regular
expressions. Available from https://github.com/crocs-muni/sec-
certs/blob/b84b03a57c81636bc617eccc1d03fIbbad6albac/sec_
certs/cert_rules.py. 2022.

http://arxiv.org/abs/1705.05347
commoncriteriaportal.org/
https://csrc.nist.gov
https://doi.org/10.6028/NIST.SP.800-126r3
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf
https://nvd.nist.gov/vuln/data-feeds
https://github.com/crocs-muni/sec-certs/blob/b84b03a57c81636bc617eccc1d03f9b6ad6a15ac/sec_certs/cert_rules.py
https://github.com/crocs-muni/sec-certs/blob/b84b03a57c81636bc617eccc1d03f9b6ad6a15ac/sec_certs/cert_rules.py
https://github.com/crocs-muni/sec-certs/blob/b84b03a57c81636bc617eccc1d03f9b6ad6a15ac/sec_certs/cert_rules.py

VLADNI CERTIFIKACE A OTEVRENY SOFTWARE

Jaroslav Reznik

»Kyberneticka bezpecnost” se v posledni dobé stava velkym tématem,
zejména po mnoha (nedavnych) bezpe¢nostnich incidentech nejen v do-
davatelskych Fetézcich a s nartastem zranitelnosti v softwaru a hardwaru
se nachézime v bezprecedentni dobé, kdy je témér kazdy systém néja-
kym zptusobem zranitelny (a mame $tésti, kdyZ jsou zranitelnosti znamé
a v idealnim p¥ipadé jiz opravené). Existuje také mnoho geopolitickych
dusledkii pocitacové bezpecénosti, které mizeme pozorovat témér v realném
Case v boji mezi ,hodnymi“ a ,zlymi‘ hochy a vlady si samoziejmé chtéji
uchovat sva tajemstvi (ale rady by znaly tajemstvi ostatnich). Pro ochranu
téchto informaci existuje mnoho norem a certifikaci. V tomhle ¢lanku se
zaméiime piedevsim na severoamerické normy a certifikace (i kdyZ se muze
jednat o mezinarodni standard) a to predevsim z praktického hlediska
projektového fizeni.

Totéz plati pro open source — v dnesni dobé témér kazdy produkt
obsahuje alesponi ¢ast open source koédu a mnoho komeréné dostupnych
produktii je dokonce zaloZeno zcela na open source. VIady piijimaji open
source kazdym rokem vice a vice vzhledem k jeho flexibilité, cenovym
vyhodam a moznosti review kodu.

Co se ale stane, kdyz tyto dvé véci spojime? Jsou vladni standardy,
certifikace, bezpefnost a open source kompatibilni, nebo ne? Odpovéd zni
ano. Ale jako vzdy ,s ale®. ..

Zacneme odpovédi na otézku jaké certifikace mame a jaké jsou problémy
pii certifikaci open source softwaru (i kdyZ je distribuovan jako soucast
komer¢niho enterprise feSeni).

1 Bezpecnostni (vladni) certifikace
Mezi nejznaméjsi bezpecnostni certifikace patii:
e NIST SP FIPS 140-2 a nastupnicky FIPS 140-3

e Common Criteria for Information Technology Security Evaluation

48

Jaroslav Reznik

Interni pFiprava + gap analyza Exekuce Certifikét vydan
Gap analyza miiZe byt externi, Dokumentace, reporty,
nebo od konzultanta/labu testovanf, bug fixing, ()CVE

|

om

1.1

Nékolik
2-3m mésicl
l 6-12m [12-24m
Kontrakt Odeslani certifikacni autorité
MizZe trvat nékolik mésicd Mze trvat mésice, ale taky po

n&jaky Easovy limit (NIAP
limituje na 90-180 dni)

Obrazek 1: Typicky pribéh certifikaci

Proces

Ackoliv se jednotlivé certifikace lisi (pfedevsim v cilech a terminologii),
proces je obvykle velmi podobny.

1.

2.

Vybér akreditované laboratote

,Gap® analyza, aneb prvotni review vlastnosti produktu vaéi stan-
dardu. Pokud produkt pozadavky nespliiuje, je nutné nejprve nedo-
statky napravit, nebo (pokud to jde) zménit rozsah /cil.

Dokumentace, pfedeviim v piipadé FIPS vefejné dokumenty Security
Policy a pro Common Criteria Security Target, ale také neverejné
dokumenty popisujici design produktu (low/high level), entropii,
reporty atd.

Testovani produktu vici pozadavkim certifikace a pripadné opravy
chyb

Analyza CVE a jejich ptipadné opravy
Odeslani ,balicku* certifika¢ni autorité

Reakce na pfipominky certifika¢ni autority, pfipadné opravy nebo i
re-testovani

Certifikat je vydan.

54. KONFERENCE EUROPEN.CZ 49

1.2 Vyzvy

Jak je ziejmé z ilustra¢niho obrazku vyse, certifikace jsou obvykle velmi
pomalé a Casové a finanéné naro¢né a v piipadé, ze gap analyza odhali
nedostatky, mize se takovy proces protdhnout o nékolik mésict az let.
Jednim z velkych problémi jsou také ¢asté zmény ve standardech, které
maji bud velmi kratké pfechodné obdobi, nebo mohou mit i okamZitou
platnost jako jsou napiiklad Technical Decisions NIAPu. Tohle se samo-
ziejmé projevi na cené jak vyvoje, tak samotné certifikace. Bavime se od
vyssich desitek tisic dolart, az po miliony dolart.

V pripadé open source je pak dulezity i piistup upstream projekti.
Nékteré projekty jsou k certifikacim pratelské, jako napriklad OpenSSL —
mozné nejéastéji FIPS 140 validovany modul, kde upstream pii vyvoji na
FIPS piimo mysli. Naopak nékteré open source projekty (& spiSe jedinci)
jsou k certifikacim i vyloZené nepiéatelské. Z pohledu open source se ale da
tenhle piistup pochopit — kviili ndkladim jsou certifikace pfistupné jen
velkym komerénim spole¢nostem, které vyuzivaji open source a samotnym
open source projektiim jsou tak prakticky zapovézeny.

Open source samoziejmé prindsi i vyhody. Code reviews jsou vyrazné
jednodussi, staci odkazat laboratofe na repozitar s kdédem a neni tieba
fesit sdileni kodu proprietéarni aplikace. Do open source projekti pak
mohou s podporou certifikaci pfispivat vSichni, kterym na podpore zaleZi a
v komer¢ni sféfe jsou navzajem konkurenty. Otevieny kod ale v nékterych
pripadech vede az ke stavu, Ze se ¢ast napsand komunitou schvéilné prehlizi
(jakoby neexistovala), nebot v open source komunitéch ¢asto neexistuje
zadné kontrola vyvoje a naopak se velmi tla¢i na procesy v dobé, kdy se
koéd prevezme do downstreamu.

2 FIPS 140-2 a FIPS 140-3

FIPS je zkratka pro Federal Information Processing Standards — tedy sada
standardt pro zpracovani informaci (pfedeviim) v americkych vladnich
organizacich a regulovanych odvétvich. FIPS 140-2 a jeho nastupnicky
FIPS 140-3 se zabyvaji validaci kryptografickych moduli (Cryptographic
Module), kdy modul miZe byt jako softwarovy, tak hardwarovy rtzné
urovné zabezpedeni (Security Level). Nejnizsi je troven 1 — vétsinou softwa-
rové moduly, nejvyssi pak uroven 4. Za FIPS 140 stoji National Institute
of Science and Technology (NIST) a jeho dva programy CAVP (Crypto-
graphic Algorithm Validation Program) a CMVP (Cryptographic Module

50 Jaroslav Reznik

Validation Program). Primarnim cilem FIPS 140 je ochrana vladnich dat -
jejich Sifrovani a bezpecéné ukladéani.

V soucasné dobé je aktuélni verze FIPS 140-3, ktera je zéroven zalozena
na mezinarodnim standardu ISO/IEC 19790:2012. FIPS 140-3 je platny
od zai{ 2021 a plné nahradil FIPS 140-2. Puavodni certifikaty ztstavaji
platné (platnost FIPS 140 certifikati je obvykle pé&t let), ale neni mozné
jiz ziskat FIPS 140-2 certifikat. Jediné povolené zmény jsou takové, které
neprodluzuji jeho platnost (tedy naptiklad scénafe 1ISUB, 3ASUB, 3BSUB
— viz nize).

Z technickych pozadavki FIPSu je tfeba zminit self testy, kdy se
moduly pfi prvnim spusténi musi otestovat jestli funguji spravné a omezeni
nepovolenych algoritmii. V nékterych pfipadech miiZe omezeni byt pouze
sbapirové” (a tedy dokumentované v Security Policy), ale nékteré moduly
naopak mohou pfestat fungovat. Velmi striktni pozadavky jsou pak i
pro generatory nadhodnych &isel. Povoleni FIPS modu tak ¢asto prinési
neéekané problémy, které mohou byt slozité na nalezeni a opravu.

2.1 Proces

Validaci moduld provadi akreditovana laboratof (napf. Atsec), soucasti je
testovani vici pozadavkim a dokumentace. Nejdulezitéjsim dokumentem
je vefejné dostupny Security Policy dokument, ktery popisuje jak samo-
statny modul, jeho kryptografickou ¢ast (cryptographic boundary), ale
taky pozadavky na to, jak modul spravné pouzivat. V piipadé krypto-
grafickych knihoven muze napiiklad omezovat které API je moZzné vyuzit
a obsahuje seznam schvélenych a neschvélenych algoritmii, které modul
implementuje. Naro¢nost validace pak zalezi na jednotlivych scénarich.
Mezi zékladni scénéfe patii

54. KONFERENCE EUROPEN.CZ 51

e 1SUB (nové 1VI, 1VA, 1UP atd.) — jiné neZ bezpecnostni zmény
(non-security relevant) ve formé aktualizace dokumentace, neplati se
NIST recovery fee, zmény se projevi v existujicim certifikdtu

e 3SUB (nové 1MU, 3MC) — security-relevant zmény do 30 procent
kodu, plati se NIST recovery fee, NIST CMVP vyda novy certifikat,
vyzaduje testovani, podvarianty jsou

— 3ASUB (nové 3CVESI) — zrychleny proces pro revalidaci v p¥i-
padé CVE, zadné jiné security-relevant zmény nejsou dovoleny

— 3BSUB - aktualizace kviali zméné standardu

e 5SUB (nové 5FS) — nové moduly, nebo zmény, které nespadaji pod
zadny jiny scénaf, obvykle vic jak tficet procent security-relevant
kédu

Pro kazdy schvéleny algoritmus je pak tfeba mit algoritmové certifikaty.
Jedné se o Known Answer Test (KAT), kdy laboratof vyzada ze serveru
ACVP testovaci vektory, ty se spusti a vysledky se odeslou na server pro
konfirmaci vysledki.

2.2 Problémy specifické pro FIPS 140

Aktualné (duben 2022) je nejvétsim problémem doba trvani validace na
strané NISTu. Jednim z dtuvodu je pfechod mezi verzemi standardu FIPS
140-2 a FIPS 140-3. Neni neobvyklé, Zze moduly ¢ekaji na certifikat vic
jak deset mésicti. Po tuhle dobu jsou uverejnéné na Modules In Process
(MIP) listu. Disledkem je pak nejen to, Ze zakaznici musi ekat na nové
verze modult, ¢asto i na end-of-life nepodporovanych verzich, ale taky
ze Cerstvé vydané certifikity jsou na verze, které obsahuji bezpe¢nostni
problémy (CVE). Vede to tak ke kuriézni situaci, kdy si uzivatelé musi
vybrat, jestli chté&ji byt striktné compliant, nebo pouzivat verzi bez znamych
zranitelnosti.

3 Common Criteria
Common Criteria je mezinarodni standard ISO/TEC 15408 pro certifikaci

pocitacové bezpecnosti, celym nédzvem Common Criteria for Information
Technology Security Evaluation, bé&Zzné se zkracuje jako CC. Certifikaty

52 Jaroslav Reznik

udéluji narodni certifika¢ni autority (schémata). V. USA se tak jedna
o NIAP (National Information Assurance Partnership), v Némecku pak
BSI (Bundesamtes fiir Sicherheit in der Informationstechnik) atd. Stejné
jako v pripadd FIPS 140 provadi certifikaci akreditovana laboratof (znovu
napiiklad Atsec).

LIS

J
N\

COMMON CRITERIA

3.1 Proces

Pted kazdou Common Criteria certifikaci je potfeba si ujasnit si cile a
dle toho zvolit laborator a schéma. Ne kazda laborator je akreditovana
ve v8ech schématech atd. Kli¢ové jsou pozadavky zakaznikt a zemi, ve
kterych se produkt bude dodéavat vladnim agenturam. Ve Spojenych statech
tak primérnim cilem bude evaluace vic¢i NIAPem schvalenym protekénim
profilim (Protection Profile, PP). Protekéni profil specifikuje sadu Security
Functional Requirements (SFRs), které produkt musi splnit z pohledu
bezpe¢nostni funkcionality. Jen takovy produkt je pak pridan na Product
Compliant List (PCL). V jinych zemich muZe byt naopak poZzadavek na
EAL (Evaluation Assurance Level), kdy kazda troven pfidava mnoZzinu
SARs (Security Assurance Requirements), tedy procesnich pozadavki jako
jsou zdrojové kody ve verzovacim systému, tzv. site visits, kdy se provadi
audit fyzické bezpecnosti jako je pristup do budov, k serverim atd.

V piipadé, Ze neexistuje protekéni profil pro danou technologii (a
vytvofeni a schvédleni nového PP je na roky), nebo produkt nespliiuje
striktné PP, tak jedinou moznosti je EAL certifikace s vlastnim Security
Targetem.

Vzhledem k odlisnosti procest se jako priklad zaméfime na proces
NIAPu.

54. KONFERENCE EUROPEN.CZ 53

Prvnim krokem je sepsani Security Targetu (ST) podle vybraného
protekéniho profilu (PP). Pro operaé¢ni systém je to General Purpose Ope-
rating System Protection Profile (PP _OS), nyni ve verzi 4.2.1. Pro tzv.
check-in, nebo-li spusténi oficialni procesu s NIAPem, je pak tieba jesté
Entropy Assessment Report. JelikoZ po oficidlnim check-inu bézi Thita 180
dnd na dokonceni certifikace (a tim je mySleno i vydani certifikatu!), je
vhodné mit alespon pifedbézné otestovany produkt vici pozadavkim, nebo
v idedlnim piipadé mit testovani kompletné hotové. Testovani produktu
provadi v pripadé PP laboratof (naopak v EAL evaluacich musi i dodavatel
predvést vysledky jeho testovani jako soucast evidence).. Takovy produkt
je pak publikovan jako In Evaluation na webu NIAPu. Po dodani vSech
reportl a tzv. check-outu NIAP zacne oficialni hodnoceni a pokud je vse
v pofadku, vyda certifkat. Z reporti stoji za povsimnuti AVA VAN, tedy
vulnerability assessment report — v produktu, ktery dostane Common Cri-
teria nesmi byt zaddné znamé CVE, které neni opravené, vyargumentované,
nebo néjakou formou mitigované.

3.2 Problémy specifické pro Common Criteria

Ackoliv jsou Common Criteria mezinarodni standard, tak p¥istup jednot-
livych signatarskych zemi k tomuhle standardu je velmi odlisny. Severo-
americké zemé preferuji PP certifikace, evropské zemé pak EAL. Kvili
zméné v Common Criteria Recognition Agreement (CCRA) se mezinarodné
uznéavaji EAL certifikace jen do trovné EAL 2.

Zajimavou vyzvou jsou pak i CVE v jiz zminédném AVA VAN reportu.
Jelikoz tenhle report nesmi byt starsi tficeti dnti a to od doby vydani
certifikiatu, jedna se tak o skoro nekoneény boj s ¢asem a novyma CVE.
V praxi se nejlépe osvédéuji pravidelné mésiéni aktualizace AVA VAN a
tedy mit report vzdy pripraven.

4 Dalsi certifikace

Zbézné zminim i nékteré z dalsich vladnich certifikaci, které se snazime
ziskat pro nase produkty.

USGv6 Test Program (U.S. Government IPv6 Test Program)
jak jiz nazev napovida, je program na testovani spravné implementace
IPv6 protokolu — jak konformity s IPv6 standardem, tak interoperability.
Jedné se o testovani vuci sadé standardd NISP SP 500. Testovani provadi
University of New Hampshire Interoperability Lab.

54 Jaroslav Reznik

SCAPVP (Security Content Automation Protocol Validation
Program) je program (opét od NISTu — SP 800-126 rev 3) pro validaci
SCAP naéstroju jako je napiiklad OpenSCAP. Posledni verze je SCAP 1.3.

FedRAMP (Federal Risk and Authorization Management
Program) je program pro bezpefnostni hodnoceni, autorizaci a monitoring
cloudovych produkti. Jednim z pozadavkia pro FedRAMP je FIPS 140.

STANDARDIZACE V OBLASTI KRYPTOGRAFIE

Jan Dusatko

E-MAIL: HTTPS://CRYPTOSESSION.CZ

Abstrakt

O standardizaci v oblasti kryptografie patrné kazdy slysel. Ale jaky ucel plni? Jakou
md historii, jak se vyvijela a vyviji? Jaky vliv na ni maji zdkony a normy? Jak se
tyto standardy vyvijely? Jakd je blizkd budoucnost a co to znamend z pohledu IT?
Uvedené otdzky mohou poskytnout zajimavy pohled na soucasné snahy o zajisténi
bezpecnosti. Stejné tak je potieba si uvedomit, k cemu kryptografie slouzi a s jakyjmi
hrozbami se potkdvd.

1 Uvod

Kryptografie byla vzdy nastrojem pro utajeni obsahu komunikace pied
nepovolanymi osobami. Kdy vznikla, je sporné, ale jisté je pouziti téchto
technologii pro vale¢né ucely. Tedy pro koordinaci aktivit a utajeni téchto
informaci pred protivnikem. Pro masivni rozsifeni je ale nutné takovy
systém standardizovat a zjednodusit. A zaroven pochopit principy, které
kryptografie vyzaduje, tedy jak s ni spravné pracovat. Ty byly poprvé
formulovany Auguste Kerckhoffem.

2 Vyuziti kryptografie a omezujici podminky

Vyuziti kryptografie je omezeno nékolika faktory. Patrné nejvétsi omezeni
je technologické, mimo néj se ale nesmi zapominat na ekonomickou stranku
véci, lokdlni zdkonna omezeni a pripadné organizac¢ni pravidla. Uvedené
podminky ale nejsou kompletni. Otazkou je i kdo kryptografii pouziva.

56 Jan Dusatko

Zda statni organizace, soukromé organizace nebo soukromé osoba. V ne-
posledni Fadé tu je otazka, zda se jedna o vyvoj, ndkup, prodej nebo uziti
této technologie. Z praktického pohledu je ale situace vyrazné jednodussi.
Vétsina aplikaci fesi technologickd omezeni, tj. co je mozné nastavit a pou-
zit, ekonomicka omezeni a omezeni dana kryptopolitikou, ktera je pouzita
v ramci zakonnych podminek a napliiuje pozadavky organizace.

Po ukonéeni II. svétové valky a v pribéhu studené valky zacala byt
kryptografie pouzivana jako zbran. Cteni cizich dopist sice neni préce
gentlemanti, ale schopnost vidét do hlavy protivnika, znat jeho tajem-
stvi a diky tomu ziskat v€as jeho rozhodnuti (s dobrou analytikou je i
predjimat) umoziuje pfipravu a dovoli st¥et na misté, které si ten, kdo
ma tuto schopnost, miize zvolit. Proto byla snaha omezit sdileni téchto
strategickych informaci nejprve pomoci organizace COCOMM, nasledné
pomoci mezinarodni smlouvy Wassenaar Arrangement. Veskeré restrikce
ale budi i odpor. Jeho dusledkem byly soudni spory, které nasledné umoz-
nily pouziti silné kryptografie i soukromym osobam. ZvIast v soucasnosti
se jedné o dulezitou moZnost, at kvili ochrané pred represivnimi reZzimy,
nebo ochrané pred perzekuci kultury ruSeni, riznych pozitivnich diskri-
minaci, nebo ,,jenom* o ochranu svobody slova. V piipadé soukromych
a statnich organizaci se pak jedna o ochranu strategického rozhodovani
a klasifikované komunikace. Chyby v ochrané maji zédvazné dopady, bez
této ochrany soukromaé firma ztraci konkurenceschopnost a zaniké, statni
pak ztraci divéru obéant. Vzajemna provazanost tak v dobrém i Spatném
vzéjemné ohrozuje dalsi navazané organizace.

3 Soucasny vyvoj a standardizace

Po vzniku algoritmtt DES v USA a obdobného standardu Magma v byvalém
Sovétském Svazu v sedmdesatych letech minulého stoleti doslo k postup-
nému rozvoji kryptografie. Hlavni zasluhu na tom mél jak rozvoj pocitaci
a potfeba soukromé komunikace po internetu, tak nékolik soudnich sporii.
V soucasnosti se tak zajem v oblasti kryptografie déli do nékolika smérti.
Symetricka kryptografie, asymetrické kryptografie, hash funkce, generatory
nahodnosti a MCP (multiparty computation), ktera zasahuje napf¥. do
oblasti anonymizace, zero-knowledge protokoli, ale i do algoritmt pro
balancovani zatéze v rdmeci clustert.

Diky prvotnimu vyvoji bylo mozné v poloviné devadesatych let zacit
pouzivat alesponn néjakou metodu ochrany transportniho kanélu. Béhem

54. KONFERENCE EUROPEN.CZ 57

nékolika let se ukazalo, Ze je nedostatecna, a tak se na zékladé zkuSenosti
zaCaly pouzivat docasné klice jako forma Perfect Forward Secrecy a na-
sledovalo i $ifrovani na aplika¢ni vrstvé (End-to-End Encryption). Jejich
pouziti ale potfebuje spole¢nou technologickou zékladnu, kterou zajistuje
pravé standardizace v poslednich letech. Proto byly vytvofeny vefejné
soutéze, které mély za cil spojit schopnosti a znalosti co nejvétsiho mnoz-
stvi profesionalnich i amatérskych kryptologi. Cilem je zajistit tvorbu
provéfenych standardu, které odolaji utokam.

Prvni vlastovkou byla soutéZz o novy kryptograficky standard AES. Byl
urcen jako nahrada jiz zastaralého algoritmu DES. Tuto soutéz vyhral
algoritmus Rijndael. Postup verejné soutéze byl inspiraci i pro klani Nessie
a CryptRec. Zatimco CryptRec byl v Japonsku prohlasen za tspésny,
Nessie v EU prokazala slabiny dostupnych proudovych Sifer a ve finale
vedla k soutézi eStream. Dalsi ze soutézi byl vybér nového hashovaciho
standardu SHA3 (NIST). Mimo oficialnich aktivit byly i podobné aktivity
v ramci kryptologické komunity, kde se jednalo o soutéze CAESAR a PHC.
Prvni zmifiovana méla za el najit nové metody, zajistujici autentizované
Sifrovani, druha specidlni t¥idu pomalych hash funkci, pouZitelnou pro
ukladéani hesel. V nedéavné dobé se pak jednalo o dalsi oficialni klani, to
konkrétné lehka kryptografie (NIST LWC, tedy LightWeigh Cryptography),
ktera by méla zabezpecit komunikaci v pripadé IoT, RFC & SmartCard.
V soucasné dobé je jesté stale aktivni soutéz NIST PQC (Post Quantum
Cryptography). Tato soutéZ je velice dilezita z divodu souc¢asného rozvoje
kvantovych pocitaci, které se mohou v horizontu let stat hrozbou pro
klasickou asymetrickou kryptografii.

Zemé, jako je Rusko nebo Cina jdou vlastnim smérem. Rusko pouziva
narodni standardy GOST (rocyaapcTBeHHBIN cTaHzapT), které jsou vyvi-
jeny na zakladé specifikaci. Obdobné je na tom Cina, ktera pouziva rodinu
SM (Shang-Mi) algoritmii, ani zde se nejedna o vefejné soutéze.

Diky témto kroktim mame k dispozici algoritmy, na kterych se mohou
obé strany snadno domluvit. Asymetrické algoritmy zajistujici digitalni
podpis nebo domluvu na sdileném tajemstvi. Mame symetrické algoritmy
pro Sifrovani dat, jak proudové, tak i blokové, dale moédy operaci blokovych
algoritmi. Mame i standardizované hash funkce. To je zaklad, ale mimo
uvedené mame moznost pouzit stovky funkci, které standardizované nejsou.

Ale mimo Sifrovacich algoritmu je nutné standardizovat jesté jednu
dilezitou komponentu, generatory nadhodnosti. V soucasnosti dochazi
v této oblasti k masivni obméné, kdy jsou staré mechanismy nahrazovany
novymi, tentokrat uz standardizovanymi. SlouZi pro generovéani inicializac-

58 Jan Dusatko

nich vektort, soli, nonce a dalsich nepredvidatelnych blokt dat. Presto
stale nékteré operaéni systémy obsahuji zastaralé nebo i chybné generatory,
které je mozné se ,spravnou” konfiguraci zneuZit.

7 praktického hlediska se nejéastéji pouzivaji vyse zminéné algoritmy
pii zajisténi SSL/TLS/DTLS pfenosi obsahu webu nebo pro zajistént
prenosu e-mailti. Nejedné se o jedinou vrstvu, kryptografie se pouziva i jinde
(IPSec, nativni sou¢ast NTP, SNMP, SSH a dalsi), ale pro aucely uZzivateli
se jedna o vrstvu nejzasadnéj$i. SouCasné implementace tak postupné
Standardizace je dilezitou soucésti, zajistujici technologickou spolupraci
mezi jednotlivymi datovymi rozhranimi. Postupné obména za standardy,
které maji pozadované vlastnosti, tak zajistuje vyssi iroven bezpecnosti,
nez byla u vétSiny téch predchozich.

4 Soucdasnia a budouci rizika

Kryptografie slouzi k zajisténi ochrany duvérnosti a integrity dat, nezajis-
tuje jejich dostupnost (pfesnéji zajistuje jejich nedostupnost). Je oslabovana
neznalosti uZivateld, ale i chybami implementace (rozdil mezi kryptogra-
fickym protokolem a sadou logickych podminek). To, co je ale nejvétsi
problém, je ignorovani pozadavki, kladenych matematickou konstrukei.
Diky tomu jesté po 40 letech nachazime zasadni problémy v implemen-
taci relativné jednoduchych mechanismii. Vétsina soucasné asymetrické
kryptografie je matematika témér na trovni stedni skoly.

Zde je i nejvétsi problém pro blizkou budoucnost. Post-kvantova kryp-
tografie pouziva vyssi matematiku, ktera je vyrazné slozitéjsi a vyrazné
naro¢néjsi na znalosti. Jak dlouho bude trvat odstranéni implementac¢nich
problémt u téchto algoritmi? Standard v této oblasti jesté néjakou dobu
mit nebudeme, a i kdybychom ho méli, dalsich 40 let si nemtzeme dovolit.
V soucasnosti jesté stéle probiha vybér nadéjnych algoritmi. Potiebujeme
¢as na jejich implementaci a hledani chyb. Nutné musime mit i ochrannou
lhitu pro zajisténi davérnosti dat. Zavod mezi kvantovymi pocitacéi a
asymetrickymi algoritmy proti témto pocita¢im odolnymi zacal. A vitéz
je stale nejisty.

LESK A BIDA SIFROVANI DISKU
Milan Broz

E-MAIL: XBROZQFI.MUNI.CZ

Abstrakt

Sifrovdni dat na drovni disku je jedna z nejstarsich, a zddnlivé trividinich, cest
k dosazeni divérnosti dat (nebo alespoti cesty pro splnéni polozky osobni data
jsou 8ifrovana v IT auditni zprdvé).

Zkusme si projit historii rizngch implementact, véetné dobriych ndpadi, ale i
omyli, pocinaje TrueCryptem (respektive VeraCryptem), BitLockerem, LUKS a
FileVault a jejich pFistupem.

1 Uvod

Sifrovani dat na uloznych zarizenich (data-at-rest storage encryption) se
stalo jiz béZznym opatifenim chranici data v pripadé ztraty ¢i odcizeni
zafizeni. PfestoZe méa softwarové Sifrovani disku nékteré nevyhody vuci
gifrovani p¥fmo v souborovém systému (¢i aplikaci), je stale masivné pouZi-
vano prakticky na v8ech platformach véetné mobilnich (jako jsou chytré
telefony).

Pokud vsak potfebujeme pfenaset data mezi riaznymi operacnimi sys-
témy (jako je Windows, Linux & macOS) a nechceme-li pouZit cloud
sluzeb, setkdme se s problémem, jaké Sifrovani pouzit, aby se zafizeni dalo
bez problémii odemknout na v8ech téchto systémech. Tento problém byl
jednou z motivaci, pro¢ implementovat v Linuxu pfistup k jinym formatiam
sifrovanych diskti nez je nativni LUKS.

Implementace open-source podpory vyzaduje dvé zékladni véci — dosta-
te¢nou znalost formétu (bez nutnosti pouZzivat proprietarni dokumentaci) a
dostate¢né flexibilni architekturu pro konfiguraci. Svobodnéa dokumentace
proprietarnich formatia (jako je BitLocker ¢ File Vault) neni sice dokonala,

60 Milan Broz

ale je z velké ¢asti dostupna diky snaze o forenzni analyzu téchto forméattu
v open-source prostredi [1][2]. Zaroven integrace do zakladnich systémovych
utilit a Linuxového jadra prinasi tuto funkcionalitu uZivatelim prakticky
v8ech distribuci bez nutnosti cokoliv dalsiho instalovat.

Konfigurace sifrovanych diskt v Linuxu je velmi flexibilni diky dvéma
zékladnim stavebnim bloktim, které si struéné popiSeme.

1.1 Linuxové jadro a dm-crypt

Prvnim blokem je jaderny ovlada¢ dm-crypt, ktery umoziuje transparentné
Sifrovat blokové zafizeni on-line, podle dostupnych parametri. Dm-crypt
neresi zadné ulozeni kli¢t ani jejich spravu, je tedy jen vykonnym ovlada-
Cem, ktery se staré o Sifrovani sektorti. Na jeho konfiguraci je tfeba znat
konkrétni parametry Sifrovani (blokovou Sifru, Sifrovaci mod, pouzity inici-
aliza¢ni vektor a pochopitelné kli¢) a parametry jako je offset na blokovém
zafizeni nebo velikost sektoru. Zaroven dm-crypt interné neimplementuje
sifrovaci algoritmy (s vyjimkou specialnich inicializaénich vektori), ale jen
pouziva rozhrani k jiz implementovanym Sifrovacim algoritmtm v jadre.
To automaticky umoznuje pouzit hardwarovou akceleraci, pokud ji dany
ovlada¢ poskytuje (napfiklad instrukce AES-NI). Na konfiguraci dm-cryptu
je tedy potieba znat Sifrovaci kli¢, kterym se pfimo Sifruji sektory na disku,
obvykle oznacovany jako Media Encryption Key (MEK) nebo Volume Key.

1.2 Knihovna libcryptsetup

Druhym stavebnim blokem je knihovna liberyptsetup (kterou vyuziva na-
stroj cryptsetup, se kterym budeme v pitkladech pracovat). Tato knihovna
zpracovava metadata jednotlivych formati uloZzenych na disku, imple-
mentuje tedy spravu klica. Zakladni vlastnosti je, ze veskeré zpracovani
metadat probiha jako docasny uzivatelsky proces, jadro systému pak jen
obdrzi finalni konfiguraci. To umoziuje efektivné oddélit vlastni zpracovani
metadat od aktivniho procesu Sifrovani sektort.

Nad aktivnim dm-crypt zafizenim je pak mozné pouzit libovolny sou-
borovy systém, ktery ma ovladace v jadre. Tento ovladaé (¢i aplikace
pFistupujici pifmo k blokovému zafizeni) pak o vlastnim Sifrovani disku
prakticky nevi.

Data pristupna pfes dm-crypt je mozné jak ¢ist, tak zapisovat (pokud
to ovladag souborového systému podporuje). Metadata proprietarnich for-
méata disku jsou v8ak vzdy pouzivana jen pro ¢teni — pomoci liberyptsetup

54. KONFERENCE EUROPEN.CZ 61

neni mozné je vytvorit & modifikovat (napfiklad zmeénit heslo); pocho-
pitelné s vyjimkou nativniho LUKS formatu. Toto je zamérné omezeni,
nebot s omezenou znalosti metadat neni mozné garantovat plnou funkénost
v proprietarnim opera¢nim systému. Toto FeSeni tedy umoziuje pouZivat
existujici zafizeni, ale naformatované musi byt nativnimi nastroji daného
opera¢niho systému.

2 TrueCrypt a VeraCrypt

TrueCrypt byl multiplatformnim néstrojem pro Sifrovani diskt, dostupnym
pro Windows, Linux a macOS. Prestoze je to nastroj s dostupnym zdrojo-
vym kédem, pivodni licence nebyla kompatibilni se svobodnymi licencemi.
Po ukonéeni vyvoje se vytvorilo nékolik nasledovnikii, ale v souc¢asné dobé
je jedinym rozumné udrzovanym VeraCrypt. VeraCrypt se snaZi feSit pro-
blémy (véetné podpory novych operaénich systémi, EFI bootu apod), ale
stale obsahuje kod, ktery je licencovany ptivodnimi autory.

Pivodni implementace formatu pro libcrypsetup byla ¢astecné studii
kryptografickych algoritmi realné pouzitych TrueCryptem [3], ale ukazala
se natolik pouzitelnou, ze je nyni soucéasti knihovny libcryptsetup. Na
podporu VeraCrypt zafizeni tedy neni nutné nic navic instalovat.

2.1 Metadata

Metadata formatu TrueCrypt jsou velmi jednoduché a jako jediny z po-
psanych forméati cela metadata Sifruje (bez znalosti hesla cely disk vypada
jako nahodna data — pFitomnost Sifrovani by nemélo jit bez hesla prokazat).

Metadata (parametry a kli¢e) jsou uloZeny v jednom §ifrovaném sektoru
(se sekundarnim zaloznim sektorem). Pii zadani hesla se pak zkousi v8echny
varianty algoritmi, dokud v deSifrovaném metadata sektoru neni detekovan
magicky fetézec (TRUE pro TrueCrypt a VERA pro VeraCrypt). Hlavicka
je chranéna CRC32 algoritmem proti ndhodnému poskozeni. VeraCrypt
pouziva identickou strukturu metadat, jedinym rozdilem je jiny magicky
fetézec a implementace novych variant algoritm.

Aplikace umoziuje pouziti skrytého disku (data jsou uloZena v nepo-
uzivaném prostoru primarniho disku). Z pohledu metadat je skryty disk
pouzivan stejné jako primarni, jen je metadata sektor uloZen na jiném
offsetu.

Autofi pomérné striktné odmitaji pouzivani Trusted Platform Module
(TPM), lze vsak pouzit SmartCard. Z pohledu metadat je to vsak jen

62 Milan Broz

externi ulozi§té pro heslo. Aplikace také umoziuje pouzit svazani se speci-
fickymi soubory, kde obsah ¢asti téchto soubori (keyfiles) je pfimichan do
hesla.

Sifrovact algoritmy pro data prosly dlouhym vyvojem, mnoho algoritmi
se pridavalo a odebiralo dle objevenych zranitelnosti. Lze také pouzit
zietézené Sifrovani (nékolik riznych algoritmu aplikovanych za sebou).

K podporovanym symetrickym algoritmtm patii AES, Serpent, Two-
fish, Cammelia a trochu prekvapivé i rusky Kuzniechik. Historicky byly
podporovany algoritmy Blowfish, CAST5, 3DES a velmi kratce IDEA, ale
jejich podpora byla z aplikace odstranéna. Sifrovacim moédem byl z pocatku
CBC (s velmi zvlastni modifikaci pro zietézené Sifry a s pouzitim trivialniho
whiteningu). CBC mod byl po problémech se $patné implementovanym
inicializa¢nim vektorem odstranén (existuje utok, ktery umozioval ve
specifickych pripadech odhalit skryty disk). Kratce byl nahrazen Sifrova-
cim modem LRW, aby se nasledné pteslo na mod XTS, ktery se pouziva
dodnes.

Zajimavym problémem je nutnost pfeformétovat celé zafizeni (7o
avoid hinting whether your volumes contain a hidden volume or not),
pokud pouziva skryty disk a pokud bylo vytvoreno ve verzi starsi nez
VeraCrypt 1.18. Neni jasné, na jakém principu hinting funguje, ale zfejmé
je moZné rozpoznat vypliiova data (pokud skryty disk neni pouZit) od
realné ulozeného Sifrovaného metadata sektoru skrytého disku.

Pro odvozeni kli¢e z hesla (kterym se pak desifruje metadata sektor)
je vzdy pouzit algoritmus PBKDF?2, 1isi se vSak v parametrech. Podporo-
vané hashovaci algoritmy byly RIPEMD160, Whirlpool, SHA1, SHA256,
SHA512 a rusky Streeboghl2. VeraCrypt odstranil nékteré algoritmy
(SHA1, Whirlpool) a né&které varianty (pro bootovaci disk se pouZival
mensi pocet iteraci). VeraCrypt se snazi feSit problém odolnosti algoritmu
PBKDF2 vuéi slovnikovym atokim zvySenim poétu iteraci (PBKDF?2 je
velmi efektivng paralelizovatelny). Nad ramec fadového zvySeni poétu de-
faultnich iteraci (napiiklad pro SHA512 TrueCrypt pouzival 1000, zatimco
VeraCrypt 500000) a navic zavadi Personal Iterations Multiplier (PIM), coz
je cislo, které fadové zvysi polet iteraci (a vyhne se defaultnimu poctu).

Zvyseni poctu iteraci je v8ak pouze CasteCnym FeSenim, které navic
prenasi ¢ast problémi na uzivatele — nejen, ze odemceni disku nyni miize
trvat velmi dlouho (pokud je pouZity algoritmus az na konci seznamu, je
nutné zkusit vSechny pretim), ale v pfipadé pouziti PIM si uZivatel musi
zapamatovat nejen heslo, ale i PIM (ktery nejde odhadnout).

54. KONFERENCE EUROPEN.CZ 63

2.2 Pouziti s pomoci cryptsetup

Implementace v libcryptsetupu umoziuje namapovat jakékoliv (i historicke,
z ptvodni aplikace jiz odstranéné) kombinace algoritmi. Vyjimkou jsou
specifické nestandardni 8ifry, které jadro neimplementuje (Blowfish v little-
endian variant@ a zietézené CBC mody, nebot modifikuji standardni CBC).
Lze v8ak zobrazit metadata a ovéfit, Ze heslo je platné (liberyptsetup umi
tyto nestandardni mody pro metadata sektor naemulovat, 1ze jej tak pouzit
pro kontrolu, ze nekompatibilita je na strané VeraCryptu, ktery dany maod
jiz odstranil). Pro pouziti ruskych algoritmi je nutné doinstalovat jaderné
ovladace (v Ubuntu je to balik gost-crypto-dkms).

Vzhledem k tomu, Ze i VeraCrypt aplikace na Linuxu pouziva dm-
crypt (a ne interni implementaci algoritmu jako na Windows), vykonnostnf
srovnani riuznych Linuxovych magazint mezi LUKS a VeraCrypt postradaji
smysl — Sifrovaci ovlada¢ je identicky. VeraCrypt také implementuje ve
Windows §ifrovani kli¢e v paméti (pro zabranéni jednoduchého extrahovani
klice ze snimku RAM), ale toto feeni je pomérné ¢asto zpochybiiovano
jako neefektivni [4] a navic na Linuxu neni nikdy pouZito.

Priklad pouziti s nastrojem cryptsetup je na obréazcich 1 a 2.

3 BitLocker

BitLocker je nativnim feSenim Sifrovani diskii v opera¢nim systému Win-
dows a umoznuje pomérné komplexni nastaveni. Zde se zaméfime jen
na Cast, kterd je dostupna i pres implementaci v libcryptsetup, zejména
podporu pfenositelnych diski (oznacovanych jako BitLocker to Go).

Zajimavou epizodou v historii BitLockeru byla pifima podpora self-
encrypted diska (SED; BitLocker pak pouze ulozil metadata o disku,
neprovadél zadné Sifrovani), ale tato podpora byla po nékolika objevenych
zranitelnostech viceméné odstranéna [5] (resp. lze ji zapnout pouze zasahem
administratora).

3.1 Metadata

Metadata BitLockeru jsou inspirovana metadaty souborového systému
NTFS; zjednodusené lze Fici, ze jsou navrzena tak, aby $la implantovat do
existujiciho NTFS souborového systému na mista, kterd NTFS nepouziva
pro vlastni metadata (toto plati i kdyz BitLocker podporuje formaty FAT
a exFAT).

64

Milan Broz

cryptsetup open --type tcrypt --veracrypt test.img test

Enter passphrase for test.img:

mount /dev/mapper/test /mnt/tst

cryptsetup status test
/dev/mapper/test is active.
type: TCRYPT
cipher: aes-xts-plain64
keysize: 512 bits
key location: dm-crypt
device: /dev/loopil2
loop: test.img
sector size: 512
offset: 256 sectors

size: 130560 sectors
skipped: 256 sectors
mode: read/write

Obrazek 1: Priklad otevieni VeraCrypt kontejneru

cryptsetup tcryptDump test.img
Enter passphrase for test.img:

VERACRYPT header information for test.img

Version: 5

Driver req.: 1.b

Sector size: 512

MK offset: 131072
PBKDF2 hash: shab12
Cipher chain: aes

Cipher mode: xts-plain64
MK bits: 512

Obrazek 2: Priklad zobrazeni metadat VeraCrypt kontejneru

54. KONFERENCE EUROPEN.CZ 65

Metadata obsahuji zakladni hlavicku s viditelnym Fetézcem (signaturou)
a tfemi bloky (kopiemi) metadat (FVE zaznamy), které obsahuji variabilni
pocet key-value zdznami. Tyto bloky se volné prolinaji s Sifrovanymi daty
(obdobné jako kopie NTFS metadat). BitLocker tedy neobsahuje jednu
spojitou oblast pro data, ale je nutné tyto metadata bloky pfi odemdceni
maskovat. Ne v8echny typy key-value zédznami jsou volné zdokumentované,
ale pro zékladni praci se zafizenim jsou dulezité zaznamy, které obsahuji
klice.

BitLocker pouziva terminologii Full Volume Encryption Key (FVEK,
obdoba MEK), a Volume Master Key (VMK, obdoba KEK), kterych muze
byt vice a umozni tak odeméeni zafizen{ riznymi zptsoby (heslem, kombi-
naci s TPM, recovery heslem apod.) Dalsi typy zdznamu jsou napiiklad
identifikatory disku nebo zaznamy o datu a jménu stroje, kde byl disk
zformatovan.

BitLocker vzdy podporoval jen algoritmus AES, ale pouzité Sifrovaci
mody prosly vyvojem. Pavodné byl pouzit méd CBC, volitelné s pridanym
difuzér algoritmem FElephant. Tento algoritmus ¢astecéné fesil problémy
CBC modu, (3lo v zasadé o mixovani dat pred Sifrovanim s pomoci rotace
a sekundarntho kli¢e). Tato operace byla za cenu pouZiti nestandardni
modifikace CBC (a drobného sniZeni vykonu). V novych verzich Windows
byla tato volba kompletné opusténa a Sifrovaci mdéd byl nahrazen médem
XTS.

Pro odvozeni kli¢e BitLocker pouziva vlastni algoritmus zaloZeny na
iteraci SHA256 hashe. Sifrovany metadata zaznam s kli¢i je pak chranén
algoritmem AES-CCM (je tedy chranéna jeho integrita).

3.2 Pouziti s pomoci cryptsetup

Implementace s pomoci libcryptsetup umoziuje oteviit viechny typy Bit-
Locker zafizeni [6] (jak systémovy disk, tak varianta to Go) véetné CBC
moda s difuzérem (zde bylo pot¥eba implementace tohoto difuzéru v dm-
cryptu). Pro odemdeni jsou podporovany pouze hesla a recovery heslo
(TPM a ostatni typy nejsou v liberyptsetup podporovany). Mapovani
aktivniho zafizeni vyuziva flexibility device-mapper jaderného ovladace,
ktery umoziiuje vymaskovat bloky s metadaty BitLockeru (souborovému
systému se jevi jako prazdné sektory; nema tedy pfistup k BitLocker
metadatiim).
Priklad pouziti s nastrojem cryptsetup je na obrézcich 3 a 4.

66 Milan Broz

cryptsetup open --type bitlk /dev/sdb test
Enter passphrase for /dev/sdb:
mount /dev/mapper/test /mnt/tst

cryptsetup status test
/dev/mapper/test is active and is in use.

type: BITLK

cipher: aes-xts-plain64

keysize: 256 bits

key location: dm-crypt

device: /dev/sdb

sector size: 512

offset: 16 sectors

size: 15974400 sectors
skipped: 16 sectors
mode: read/write

Obrazek 3: Priklad otevieni BitLocker to Go flashdisku

4 FileVault2

FileVault2 je nativnim feSenim Sifrovani diski pro operacni systémy ma-
cOS. Pavodni FileVault (podle aplikace pro analyzu formatu pejorativné
prejmenovany na VileFault) byl nahrazen verzi FileVault2, které se zde
budeme vénovat.

Nové verze macOS piechazi na Sifrovani na Grovni souborového systému
s pomoci Apple File System (APFS), ale zafizeni (zejména ta pienosna)
1ze stale formatovat jako File Vault2. Toto je dulezité zejména proto, Ze
zatim neexistuje dostupna stabilni implementace APFS pro Linux, zatimco
souborové systémy pouZivané nad File Vault2 (HFS ¢i FAT) jsou v jadie
Linuxu podporovany

4.1 Metadata

Forméatovani disku v macOS s sebou nese pomérné komplikovanou struk-
turu particii a dalsich metadat; pro pristup k Sifrované ¢éasti nas vSak

54. KONFERENCE EUROPEN.CZ 67

cryptsetup bitlkDump /dev/sdb
Info for BITLK device /dev/sdb.

Version: 2
GUID: fccc81d1-91b3-4947-85¢2-0cb98cd17950
Sector size: 512 [bytes]
Created: Sat Apr 23 16:24:22 2022
Description: DESKTOP-71L8959 TEST 23.04.2022
Cipher name: aes
Cipher mode: xts-plain64
Cipher key: 256 bits
Keyslots:
0: VMK
GUID: a78c6964-0619-4ac7-a63d-b2ab56£5c9e49
Protection: VMK protected with passphrase
Salt: 1cdd33aeldabebccfdalbe6cO0bad4403
Key data size: 44 [bytes]
1: VMK
GUID: 23a8c064-5de6-46f1-98be-91ebb5c09fd4
Protection: VMK protected with recovery passphrase
Salt: 95d386¢7016£62884a13d211321eea’e

Key data size:

2: FVEK

Key data size:

Metadata segments:

0: FVE metadata area
Offset:
Size:

1: FVE metadata area
Offset:
Size:

2: FVE metadata area
Offset:
Size:

3: Volume header
Offset:
Size:
Cipher:

44 [bytes]

44 [bytes]

34603008 [bytes]
65536 [bytes]

1108344832 [bytes]
65536 [bytes]

2182086656 [bytes]
65536 [bytes]

34668544 [bytes]
8192 [bytes]
aes-xts-plain64

Obrazek 4: Priklad zobrazeni metadat BitLocker to Go flashdisku

68 Milan Broz

zajima pouze datova particie, na které jsou ulozeny jak metadata, tak i
Sifrovana data.

Metadata forméatu File Vault2 jsou uloZena na pocatku disku, nésle-
dovana oblasti s Sifrovanymi daty. Metadata jsou pomérné komplexni
(v terminologii Apple jde o Core Storage), ale pro funkéni mapovani staci
pouze omezend znalost metadat, jiz dokumentovana v oteviené formé [2].

FileVault2 obsahuje pocateéni sektor s viditelnou hlavickou (lze tedy
detekovat existenci formatu bez znalosti hesla). Dale obsahuje blok s me-
tadaty a dalsi blok, ktery je ulozen v Sifrované formé (kli¢ je v8ak ulozen
v prvnim metadata bloku). Tato ifrovana oblast pak obsahuje variabiln{
pocet metadata zdznami uloZenych ve formatu XML, binarni data jsou zde
ulozena v Base64 kdédovéani. Pro zpiistupnéni mapovani vSak potfebujeme
znat pouze zéznamy, které obsahuji kli¢e a zakladni informace o datové
oblasti, jako je offset a délka. Integrita dat ve vSech metadata oblastech je
chranéna pomoci CRC32.

FileVault2 pouZiva blokovou Sifru AES a mod XTS, jak pro uzivatelska
data, tak pro Sifrovani metadata (XML) oblasti.

Kli¢e jsou ulozeny zapouzdieny (key wrap). Pro desifrovani se pouziva
kli¢ odvozeny z hesla pomoci algoritmu PBKDF2 (s hash algoritmem
SHA256 a poctem iteraci uloZzenym v metadatech). Zajimavosti je, Ze
druhy kli¢ pro XTS mod neni v metadatech uloZen jako nezavisly, ale
odvozuje se s pomoci hash algoritmu SHA256 a Family UUID z metadat.

4.2 Pouziti s pomoci cryptsetup

Implementace formétu File Vault2 v libcryptsetup je zatim v experimen-
talni fazi, nasledujici popis vychézi z experimentt z dosud nezaclenéného
roz§ifeni popsaného v ramci diplomové préce [7] a volné dostupného jako
merge request v projektu cryptsetup [8].

Priklad pouziti s nastrojem cryptsetup je na obrazcich 5 a 6.

5 Zavér a srovnani s LUKS

Pro Linux je nativnim formatem Sifrovani diska Linux Unified Key Setup
(LUKS), a to jak ve verzi LUKSI (ktery pouZziva binarni formét metadat),
tak v nové verzi LUKS2, ktery fesi nékteré problémy a umoziiuje ukladat
variabilni metadata ve formatu JSON [9)].

Ve srovnani s ostatnimi systémy (nejen s t&mi popsanymi vyse) je
ziejmé, Ze stejné problémy lze Tesit rizné. Pouziti formata jako XML ¢

54. KONFERENCE EUROPEN.CZ 69

cryptsetup open --type fvault2 /dev/sdb2 test
Enter passphrase for /dev/sdb2:
mount /dev/mapper/test /mnt/tst

cryptsetup status test
/dev/mapper/test is active and is in use.
type: FVAULT2
cipher: aes-xts-plain64
keysize: 256 bits
key location: dm-crypt
device: /dev/sdb2
sector size: 512
offset: 131072 sectors
size: 6586368 sectors
mode: read/vrite

Obréazek 5: Priklad otevieni FileVault2 flashdisku

cryptsetup fvault2Dump /dev/sdb2

Info for FVAULT2 device /dev/sdb2.

Physical volume UUID 047a90a3d7b94b62974917d0£de502d7
Logical volume offset: 67108864

Logical volume size: 3372220416

Cipher: aes

Cipher mode: Xts-plain64

PBKDF2 iterations: 160780

PBKDF2 salt: 50ab6b6aeb18661f7b660ed762fabfb0
Family UUID: ca2f817¢c39ca467£86095ccdbcb377c9

Obrazek 6: Priklad zobrazeni metadat FileVault2 flashdisku

70 Milan Broz

JSON se miize zdat problematické, ale ve srovnani s nutnosti zachovat
kompatibilitu pfi zavadéni novych vlastnosti jde o velmi flexibilni nastroj.

Pro sifrovaci méd se vétsina v soucasnosti pouzivanych forméta shodne
na AES-XTS, alternativa je snad jen specialni konstrukce Adiantum [10]
pro Google systémy (LUKS jej umi pouZit také).

Ruzny pFistup je pfi nastaveni nékolika zpiisobi odemdeni zafizeni (at
jiz pro zalozni metody odeméeni s recovery heslem, nebo pro viceuzivatelsky
pfistup v pfipadé keysloti v LUKS).

Co je ale podstatné z pohledu uzivatelské privétivosti je integrace
do Linuxovych distribuci. Pro v8echny vySe uvedené formaty existuji
alternativni nastroje, které si mizete instalovat a pouzivat, ale jen plna
integrace do systému umozni oby¢ejnému uzivateli jednoduse sdilet data
mezi opera¢nimi systémy bez nutnosti dal3i instalace a nastavovani.

Nejde jen o liberyptsetup (pFipadné o nastroje nad systemd pro aktivaci
diskd, které jsou nad libcryptsetup postaveny), ale i podpora v blkid na
automatickou detekei metadat po vloZeni zafizeni (napiiklad p¥ipojent
USB flashdisku) a zejména podpora v desktop systémech s pomoci udisk
a podobnych nadstaveb.

Pokud mate moderni Linuxovy desktop, zkuste si vlozit BitLocker to
Go flashdisk naformatovany ve Windows — vétsina distribuci jej dnes bez
problému automaticky rozpozna a po zadani hesla zpristupni uzivateli.
A to je cilem integrace popsané v tomto ¢lanku.

Odkazy

[1] J. Metz. Library and tools to access the BitLocker Drive Encryption
(BDE) encrypted volumes. URL:
https://github.com/libyal/libfvde/.

[2] J. Metz. Library and tools to access FileVault Drive Encryption (FVDE)
encrypted volumes. URL: https://github.com/libyal/libbde/.

[3] Milan Broz a Vashek Matyas. ,,The TrueCrypt On-Disk Format—An
Independent View“. In: IEEFE Security Privacy 12.3 (2014), s. 74-77.
DOI: 10.1109/MSP.2014.60.

[4] Security Evaluation of VeraCrypt. URL:
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/Studies/Veracrypt/Veracrypt.pdf.

https://github.com/libyal/libfvde/
https://github.com/libyal/libbde/
https://doi.org/10.1109/MSP.2014.60
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Veracrypt/Veracrypt.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Veracrypt/Veracrypt.pdf

54. KONFERENCE EUROPEN.CZ 71

]

(6]

7]
(8]
(9

(10]

Microsoft. Guidance for configuring BitLocker to enforce software
encryption. URL: https://msrc.microsoft.com/update-guide/en-
us/vulnerability/ADV180028.

V. Trefny. Bitlocker Sifrovini disku v Linuzovém prostfedi. URL:
https://digilib.k.utb.cz/bitstream/handle/10563/44511/trefnj,
5C%C3%5C%BD_2019_dp.pdf.

P. Tobiés. FileVault Disk Encryption in Linuzr Environment.

Cryptsetup project. File Vault2 support. URL: https:
//gitlab.com/cryptsetup/cryptsetup/-/merge_requests/298.

M. Broz. LUKS2 format documentation. URL:
https://gitlab.com/cryptsetup/LUKS2-docs.

Paul Crowley a Eric Biggers. ,,Adiantum: length-preserving encryption
for entry-level processors®. In: JACR Transactions on Symmetric
Cryptology 2018.4 (pros. 2018), s. 39—61. por:
10.13154/tosc.v2018.14.39-61. URL:
https://tosc.iacr.org/index.php/ToSC/article/view/7360.

https://msrc.microsoft.com/update-guide/en-us/vulnerability/ADV180028
https://msrc.microsoft.com/update-guide/en-us/vulnerability/ADV180028
https://digilib.k.utb.cz/bitstream/handle/10563/44511/trefn%5C%C3%5C%BD_2019_dp.pdf
https://digilib.k.utb.cz/bitstream/handle/10563/44511/trefn%5C%C3%5C%BD_2019_dp.pdf
https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/298
https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/298
https://gitlab.com/cryptsetup/LUKS2-docs
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://tosc.iacr.org/index.php/ToSC/article/view/7360

54. KONFERENCE EUROPEN.CZ 73

CERTIFICATE VALIDATION

Tomas Weinfurt

Digital certificated become part of our daily lives — often without us
knowing. When we go to browse Internet, many sites now transparently
redirect to “secure” instances. Software packages are digitally signed and
that is crucial part of update process. And probably most visibly, we can
send and receive digitally signed email. In most cases standard software
takes care of all of it for us. Dealing with certificate and validation can be
more complicated for application developers as they may need to perform
some validation in their code. There are also aspects of certificate itself
that can impact validation and possibly security.

To start the discussion, let’s look at a simple X509 Certificate.

Certificate:
Data:
Version: 1 (0x0)
Serial Number: 14652970177198592840 (Oxcb59cebdcc509348)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=localhost
Validity
Not Before: Jan 28 22:57:27 2019 GMT
Not After : Jun 11 22:57:27 2020 GMT
Subject: localhost
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:
00:91:b6:b6:ef:5b:82:ab:43:b0:c3:d3:37:94:47:
78:33
Exponent: 65537 (0x10001)

Figure 1: Simple certificate

Before validating cryptographic operation, the certificate is used for
(TLS handshake, software update, etc) we need to also verify the certificate.

74 Tomas Weinfurt
1 Cryptographic verification

The cryptographic part is straight forward. Signature is essentially hash
computed over certificate metadata and the public key signed with Issuer’s
private key. Assuming the receiver has access to the Issuer’s public key, they
can compute the hash themselves, decrypt the presented signature with
the public key and compare both. If someone tampered with the certificate
hash computed locally and the hash encrypted with the private key would
differ. If that happens, nothing in the certificate can be trusted. This
part is most expensive from a CPU utilization prospective. It is heavily
impacted by choice of algorithms and key sizes and unsurprisingly there is
tradeoff between performance and security. In many cases performance
of the handshake does not matter as many modern protocols (like Http
1.1 persistent connection or HTTP /2 multiplexing) reuse single TLS for
multiple transactions. But it can be significant if a large number of
transactions is needed, and high CPU utilization can make the systems
more vulnerable to DenialOfService attacks.
Following table shows impact of choices for TLS handshake.!

| Method | protocol | Mean | Error | StdDev |
Jmmm [R ettt IR e e :
HandshakeECDSA256CertAsync	Tls12	1,543.22 us	25.475 us	22.583 us
HandshakeECDSA512CertAsync	Tls12	3,257.17 us	139.793 us	160.985 us
HandshakeRSA1024CertAsync	Tls12	1,482.57 us	53.269 us	61.344 us
HandshakeRSA2048CertAsync	Tls12	1,989.16 us	76.070 us	87.603 us
HandshakeRSA4096CertAsync	Tls12	5,060.03 us	93.271 us	87.246 us
HandshakeECDSA256CertAsync	Tls13	1,689.33 us	66.739 us	76.857 us
HandshakeECDSA512CertAsync	Tls13	3,159.07 us	39.501 us	32.985 us
HandshakeRSA2048CertAsync	Tls13	2,024.73 us	72.737 us	83.763 us
HandshakeRSA4096CertAsync	Tls13	5,019.56 us	128.195 us	147.629 us

While it may be tempting, weak algorithms should not be used. RSA
1024 and Shal are not safe and unfortunately the Internet is still full of
old examples using them. Probably best choice is use of Elliptic Curves
with 256 key size and Sha2 family algorithm for hashing. It typically offers
better performance and smaller data size compared to RSA. RSA may
be good choice if EC is concern for compatibly. Not every client may
support the ciphers and RSA is probably best choice for interoperability.
While 2048 RSA or 256 EC are considered secure for now, certificates with
validity beyond the year 2030 should use RSA 4096 or 512 EC. This is
because an attacker has a longer time for brute force attacks and there

lhttps://github.com/dotnet/performance/tree/main/src/benchmarks/micro/
libraries/System.Net.Security

https://github.com/dotnet/performance/tree/main/src/benchmarks/micro/libraries/System.Net.Security
https://github.com/dotnet/performance/tree/main/src/benchmarks/micro/libraries/System.Net.Security

54. KONFERENCE EUROPEN.CZ 75

being a long history of algorithms that are broken by increasing CPU
power.

2 Certificate metadata

When the signature on a certificate is verified, we can continue looking
into additional aspects. This is where we can see more variations and
where software often pushes final decisions to the end users. That may
not be viable in certain scenarios as well as it may be very difficult for the
end user to make a informed decision.

2.1 Time check

valid time. Each certificate has assigned time range of validity and it will
be deemed invalid outside of that range. This is one of the rare cases when
end user can make reasonable decision. Let say you go to your favorite
web site, and it shows the certificate expired yesterday. Is that sign of
malicious activity or did the privacy get compromised? Probably not,
but it is not trivial to do this automatically. If the expiration is less the
year 2050, UTCTime is used. Software components should not forget to
convert local time to UTC before verification. For certificates with longer
expiration, Generalized Time should be used as it allows communication
with the time zone. Adjustments for time are generally not recommended
unless it is clear that the local device may not have a valid time. On
rare occasions, the certificate may be presented before it’s validity period
starts. This can happen for example when certificates are created by some
automation but there is some drift across networking devices. When this
happen, I would recommended to adjust the certificate validly to “now —
safeOffset” instead of fiddling with validation logic.

2.2 Certificate names

X509 certificates were designed as part of X.5xx standards. That makes
them somewhat difficult to use on Internet where completely different
naming conventions are used. Both Issuer and Subject are lists of name
and value pairs. For example, Figure 2 shows “C=US, ST=California,
L=San Francisco, O=GitHub, Inc., CN=github.com” as Subject name.
Most of that text is irrelevant to validation. It is the CommonName
(CN) part that maters and it typically contains FQDN name or mail

76 Tomas Weinfurt

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
05:18:9a:54:eb:e8:c7:e9:03:e0:ab:0d:92:55:45:de
Signature Algorithm: ecdsa-with-SHA384
Issuer: C=US, 0=DigiCert Inc, CN=DigiCert TLS Hybrid ECC SHA384 2020 CA1
Validity
Not Before: Mar 15 00:00:00 2022 GMT
Not After : Mar 15 23:59:59 2023 GMT
Subject: C=US, ST=California, L=San Francisco, O=GitHub, Inc., CN=github.com
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:42:b0:93:71:85:21:ec:62:3f:cb:74:c0:46:c8:
e7:00:dc:27:4a:32:4b:8a:d5:51:83:08:11:23:52:
65:¢5:9d:64:75:94:10:9£:99:6d:3f:7b:fb:29:3b:
58:b8:37:54:78:4b:b7:3d:1c:77:7e:90:dd:bb:67:
23:32:5¢:80:d1
ASN1 0ID: prime256vi
NIST CURVE: P-256
X509v3 extensions:
X509v3 Authority Key Identifier:
keyid:0A:BC:08:29:17:8C:A5:39:6D:7A:0E:CE:33:C7:2E:B3:ED:FB:C3:7A
X509v3 Subject Key Identifier:
78:AA:72:C6:71:69:68:14:B5:59:B1:9E:8B:6E:2B:40:87:42:3B:1E
X509v3 Subject Alternative Name:
DNS:github.com, DNS:www.github.com
X509v3 Key Usage: critical
Digital Signature
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication
X509v3 CRL Distribution Points:
Full Name:
URI:http://crl3.digicert.com/DigiCertTLSHybridECCSHA3842020CA1-1.crl
Full Name:
URI:http://crl4.digicert.com/DigiCertTLSHybridECCSHA3842020CA1-1.crl
X509v3 Certificate Policies
Policy: 2.23.140.1.2.2
CPS: http://www.digicert.com/CPS
Authority Information Access
0CSP - URI:http://ocsp.digicert.com
CA Issuers - URI:http://cacerts.digicert.com/DigiCertTLSHybridECCSHA3842020CA1-1.crt
X509v3 Basic Constraints:
CA:FALSE
1.3.6.1.4.1.11129.2.4.2:
Signature Algorithm: ecdsa-with-SHA384

Figure 2: Certificate with extended attributes

address. When name is verified, exact match is used e.g. “github.com”
would not be valid for “www.github.com” or “images.github.com”. But it
is typically on the application to determine what expected name is. In the
first certificate example the CommonName was “localhost”. Connecting to
“127.0.0.1” would typically fail even if “localhost” may (or may not) resolve
to 127.0.0.1.

This become limiting as single web site can often be accessible via
different names (for example with or without leading www) or there could
be subdomains for various reasons. To make that easier, it is possible to
use wildcard matching like CN=%*.azurewebsites.net. However, that can
add significant cost comparing to string comparisons and specially crafted

54. KONFERENCE EUROPEN.CZ 77

malicious strings can lead to DoS. To make that smaller problem, RFC6125
from 2011 forbid certain patterns like “sub.*.foo.com™*.*.foo.com” or “*”.
That basically enforces valid domain and allows simplified matching (like
comparing last N characters) instead of building full state machine. With
the restrictions above, wildcard certificates are quite common.

2.3 Application logic

Applications are permitted to apply any addition validation logic. For
example, certificates may be issued to particular devices. It is not uncom-
mon to put additional information like device serial number (different from
certificate serial number) to either Subject as some additional element in
the list or add it as private extension. That allows to bring application
or business logic to validation and reject certificates that do not meet the
additional check.

While this may work from a security point of view it usually has poor
useability. For example, when TLS handshake fails, user may get some
cryptic error from browser or application but there is no good channel to
render user friendly error. For that reason, if such verification is desirable,
it is done after initial certificate validation and failures are handled at
application layer.

3 Extended attributes

To make certificates more usable, version 3 of the specification added
extensible framework for extensions. Since the certificates are generally
encoded in ASN1 notation in TLV, known extensions have assigned OID
and they can vary in internal structure. That allows you to add new
extensions easily and they can be optionally ignored by implementations
that do not understand them. In common case, they are set by CA when
certificate request is signed. Public CAs generally always follow best
practices so following the section is mostly for deployments where PKI is
managed privately.

3.1 Extended name check

As described above, even with wildcard it is not always easy to manage
single certificates that would cover multiple names, or IP addresses. Sub-
jectAlternativeName is extension that allows you to add list of DNS names,

78 Tomas Weinfurt

email or IP addresses or URIs. The certificate should be considered valid
as long as any of the variants matches the expected name. That allows
single certificates to server multiple sites or subdomains without forcing
them to have common domain.

3.2 Certificate usage

To prevent certificate use even more, there are several additional properties
that can be set.

BasicConstrains is flag showing if given certificate is intended as CA
certificate or not. That should always be set to false for certificates
presented by web site or email client.

KeyUsage added digitalSignature, nonRepudiation, keyEncipherment,
dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly,
decipherOnly primitives. Basic principle is to use only minimal flags to min-
imize possibility of misuse. While this may not be obvious, digitalSignature
should be sufficient for HT'TPS web servers.

To make the usage somewhat more useable for users and align better
with particular workloads, ExtendedKeyUssage added serverAuth, clien-
tAuth, codesigning, emailProtection. (and few more). In typical scenario,
certificate would have exactly one use e.g. certificate for user/client would
never be used to prove server’s identity.

Current recommendation is to always set all three extensions above
for leaf certificates. BasicConstrains and KeyUssage should be marked as
critical extensions.

4 Trust

Sections above were so far focused on specific certificate instances. But
that does not cover an important aspect of PKI and that is trust. Malicious
attackers can forge any site certificate and create all the recommended
extension, but they still cannot act as the original site because their
certificates are not trusted. Certificates can be valid and not trusted or
vice versa. The following section will talk more about establishing trust.

4.1 Certificate chains

We already talk about different certificate roles. Let’s look at the certificate
for https://github.com/

54. KONFERENCE EUROPEN.CZ 79

DigiCert Global Root CA
L, DigiCert TLS Hybrid ECC SHA384 2020 CA1
L github.com

Figure 3: github.com certificate chain

It all starts with Root certificate. Root certificate is a special self-signed
certificate (issuer and subjects are identical) that is somehow trusted by
OS or application. That CA can sign intermediate certificate and that can
either sign another subordinate CA or specific leaf certificate. Because
root CA is trusted, the intermediate certificate is trusted and therefore
the leaf certificate is trusted. When all the previous checks succeed, the
receiver can assume that the certified is not forged by an imposter.

This relation is called a certificate chain, and in most cases, they can
be represented by a tree graph. When a leaf certificate is presented, the
sequence is opposite(reversed?). The validation logic will need to find
who signed given certificate, find CAs certificate, verify CA’s certificate
properties, and if not trusted, repeat the process to parent certificate.
This process can have several outcomes. If this process finds trusted CA
certificate (root or any intermediate anchor) and all other checks pass, the
certificate is deemed valid and trusted. Information coming across can be
viewed as coming from a trusted source (most of the time) and depending
on usage, privacy can be counted on. This process may lead to root CA
that is not trusted or this process may fail to find intermediate certificate.
In that case the leaf certificate will not be trusted, and verification will
fail. In general, there is no distinction between the cases.

While there is convenience in trusting small set of CA certificates to
gain access to thousands of sites, this is crucial and often problematic part
of the validation.

4.2 OS Trusted certificates

Based on OS and version, there would be 50-150 certificates pre-selected
by your OS vendor as trusted roots. In general, anything signed by them
(or their subordinates) will be trusted by the OS or applications. Each leaf
certificates can be signed by one (or more) trusted CA and they would all
be treated equally. That creates a problem if you do not trust your OS

80 Tomas Weinfurt

default selection. In the old days, one could possibly opt-in only for CA
applicable to particular country or jurisdiction but that does not really
work well in the global market and modern Internet days. If an application
wants to, it is usually possibly to detach it from OS trust and use custom
root certificates. Some browsers did that in the past. While that approach
may look reasonable and limiting trust is usually good, it should be used
with caution. For example, there were deployments in the past when some
small, embedded device would trust only particular issuer. But when the
signing change (or public CA) goes out of business, it is very difficult to
update the trust. That also makes validation less predictable. Accessing
particular sites may work from a browser when using OS trust but it may
fail when custom trust is used by an application.

The general recommendation is to leave the OS trust intact unless
there is good reason for change. It most cases, somebody may want to
add additional trust to support private PKI. That can be done either via
various management tools or it could be part of the application.

5 Additional checks and online processing

In addition to all processing above, endpoints processing certificates can
use additional strategies to improve validation.

5.1 Fetching missing certificates

Section 4.1 described the process of building a certificate chain. According
to RFC, TLS servers SHOULD send intermediate certificates during hand-
shake. But often they don’t — either because of some misconfiguration or
intentionally to decrease data exchanged during handshake. But this is
only a recommendation not a strict requirement. To improve chances of
successful validation, Authority Information Access (AIA) extension was
added. It allows you to specify how CA certificate can be retrieved in
case it is not available during verification (TLS handshake or signature
verification). When the given intermediate certificate is missing and ATA
is present, validators can choose to fetch it online. While it is convenient
it may have unexpected consequences. It can make the verification un-
predictable (as it may or may not work depending on network condition
and security policies) as well as there may be significant performance
drawbacks. Let’s consider a server application that retrieves requests and

54. KONFERENCE EUROPEN.CZ 81

needs some data from another server in a data cluster. If there is problem
with the certificate chain, it may try to fetch it externally and that would
introduce significant delay that can lead to service failure. While this
typically impacts only clients and middle-ware applications, it can possibly
impact standalone servers as well if they use client certificates. Since the
client certificate is untrusted, malicious attackers can force server to do
IO to server at attacker’s command.

Depending on AIA fetching implementation, there could be additional
concerns beyond reliability and performance. When requesting some
information via HTTP, the server can send a HTTP redirect. Most HTTP
clients would honor this and they would try to fetch data from the updated
URL. That can possibly lead to longer delay, redirect loops and possibly
to protocol changes.

It is strongly recommended to put some bounds on ATA process — in
terms of duration, CPU consumption and general IO management.

5.2 Revocation status

Additionally, to all check above, X509 certificates also have a concept of
revocation e.g. marking certificate invalid /untrusted after they were issued
and possibly deployed in production. That allows recovery in cases when
leaf or intermediate CA was compromised.

While that is a great improvement from a security perspective, it
has the disadvantages of additional IO described in section above. Most
browsers would do this as optional check e.g. use it when available, but
they would not fail the handshake if not available.

The initial mechanism is Certificate Revocation List (CRL). It is essen-
tially a list of certificate serial numbers that CA no longer sees as trusted. It
is sealed with CA signature to prevent malicious DoS on valid certificates.
Depending on the CA, the CRL list can have significant size. For ex-
ample, http://crl3.digicert.com/DigiCertTLSRSASHA2562020CA1-4.
crl is 7 2MB as of spring 2021. Fetching that on slow links during TLS
handshake can cause significant delay and possibly cost more if used on
networks charging per transferred data.

To avoid issues with increasing CRL size, RFC 6960 describes online
protocol allowing to fetch status for specific certificate. While the relative
overhead is much bigger, it allows you to do quick and relatively simple
validation. Similar to CRL, responses are signed by CA certificate to
eliminate forging.

http://crl3.digicert.com/DigiCertTLSRSASHA2562020CA1-4.crl
http://crl3.digicert.com/DigiCertTLSRSASHA2562020CA1-4.crl

82 Tomas Weinfurt
6 Conclusion

Certificate validation is nontrivial process. Not only certificates need to be
check in isolation for properties and cryptographic aspects, they also need
to be verified together in chains of trust and together with intended use.
While some techniques may improve validation process, they can also lead
to service outages and possible DoS scenarios. When possible standard
solutions should be used as they tend to be more complete and accurate.

7 .NET issues related to certificate validation

This is of course not complete list, but it links specific validation issue
with full details.

o RemoteCertificateValidationCallback cannot detect future certificates
https://github.com/dotnet/runtime/issues/63830

e Https against invalid domain names (containing underscores) behaves
differently on Linux than Windows and macOS
https://github.com/dotnet/runtime/issues/58722

e SSL Connection Error with Wildcard Certificates and Underscores
https://github.com/dotnet/runtime/issues/35880

e HttpClient rejects valid certificates for dot-appended FQDNs
https://github.com/dotnet/runtime/issues/57792

e SSL RemoteCertificateNameMismatch on MacOS Catalina
https://github.com/dotnet/runtime/issues/666

e Unexpected HttpClient cert validation & timeout failures
https://github.com/dotnet/runtime/issues/805

e DotNet HttpClient doesn’t give SSL Error While curl and Java fails
https://github.com/dotnet/runtime/issues/55322

e Ubuntul8.04 net5.0 HttpClient SendAsync ignores timeout (via
token), hangs for some time and eventually crash the app
https://github.com/dotnet/runtime/issues/45010

e SSLStream should support taking a pre-validated immutable full
certificate chain
https://github.com/dotnet/runtime/issues/35844

https://github.com/dotnet/runtime/issues/63830
https://github.com/dotnet/runtime/issues/58722
https://github.com/dotnet/runtime/issues/35880
https://github.com/dotnet/runtime/issues/57792
https://github.com/dotnet/runtime/issues/666
https://github.com/dotnet/runtime/issues/805
https://github.com/dotnet/runtime/issues/55322
https://github.com/dotnet/runtime/issues/45010
https://github.com/dotnet/runtime/issues/35844

54. KONFERENCE EUROPEN.CZ 83

e SSLStream should support cancelling certificate chain building with
cancellation token
https://github.com/dotnet/runtime/issues/35839

e High native memory usage in certificate revocation checking
https://github.com/dotnet/runtime/issues/52577

e Kestrel stops serving https (http2) requests after reboot under load
https://github.com/dotnet/aspnetcore/issues/21183

https://github.com/dotnet/runtime/issues/35839
https://github.com/dotnet/runtime/issues/52577
https://github.com/dotnet/aspnetcore/issues/21183

54. KONFERENCE EUROPEN.CZ 85

MEESIGN: PRAHOVE PODEPISOVANI PRO SPRAVU
ELEKTRONICKYCH DUKAZU

Antonin Dufka, Jakub Jankt, Jiff Gavenda, Petr
Svenda

Abstrakt

Priistup k elektronickym dukazim typicky vyZaduje schvdlent od vice osob za
ucelem zagjisténi odpovédnosti. Toto schvalovdni se v digitdlnim prostiedi zpravi-
dla realizuje digitdlnimi podpisy, nicméné, Tada stdvajicich ndstroji pro prdci
s dokumenty neumoZziniuje ovérit ¢i vytvoiit vice digitdlnich podpisi stejného
dokumentu.

Prahovd kryptografie 7esi tento problém tim, Ze zprostiedkuje konstrukci
digitdlnich podpisi, které pro vytvotent vyZaduji souhlas vice stran, ale jsou ne-
rozlisitelné od standardnich digitdlnich podpisi a tedy i kompatibilni se stdvajicimi
ndstroji. Tyto techniky pouZivime v ndvrhu systému MeeSign, oteviené platformy
pro vicestranné podepisovdni dokumenti.

1 Uvod

V ramci procesu diikazniho fizeni je typicky nutné zaznamenévat piistup
k zajisténému dikaznimu materialu, prubézné vznikajicim analyzam a dal-
$im dokumenttm, ¢ehoz lze v elektronickém prostiedi dosdhnout tvorbou
digitalnich podpisi. Digitalni podpisy nepopiratelné zaznamenaji p¥istup
dané osoby k danému dokumentu pomoci jejiho kryptografického klice a
slouzi tak pro zajisténi odpovédnosti. Nékteré procesy vyzaduji podpis vice
stran, avSak bé&zné pouzivané nastroje tuto funkcionalitu mnohdy nepod-
poruji — at uz se jedné o jejich vytvafeni v rameci jednoho dokumentu nebo
nésledné ovérovani. Takovéto nastroje obvykle umoznuji vytvorit a ovérit
nanejvys jeden podpis na dokumentu. Nicméné, vzniklé podpisy je po-
tfeba verifikovat vSechny a ¢asto opakované, automatizované a s vyuZzitim
existujicich standardnich softwarovych prostiedki.

86 Antonin Dufka, Jakub Janki, Ji¥i Gavenda, Petr Svenda

Myslenka prahové kryptografie [1] byla navrzena jako zpusob reflekto-
vani spolecenskych struktur v digitalnim svété. Prahova kryptografie se
zabyva navrhem protokoli, které umoziuji provadét nékteré operace pouze
pri ucasti dostateéného mnozstvi z vybranych ucéastnika. Napriklad, s po-
moci protokolid prahové kryptografie lze vytvaret digitalni podpisy pouze
pokud se podepisovani ztucastni dostatecné velkd podmnozina opravnénych
podepisujicich. Takto vzniklé podpisy mohou byt navic nerozlisitelné od
standardnich jednostrannych digitalnich podpisa a tudiZ verifikovatelné
standardnimi néstroji.

7Z tohoto divodu je prahova kryptografie vhodnym feSenim vyse popsa-
ného problému a vyuzivame ji v nastroji MeeSign — systému pro vicestranné
podepisovani elektronickych dokumenti. V této praci prezentujeme ar-
chitekturu systému MeeSign a jeho otevienou implementaci dostupnou
v nagich GitHub repozitaiich!2. Aktualng nastroj umoziiuje tvorbu ECDSA
podpistt PDF dokumentii skupinami libovolné velikosti. Takto vzniklé pod-
pisy jsou pak ovéfitelné standardnimi nastroji pro prohlizeni dokumentt
PDF.

2 Prahové podpisy

V této kapitole struéné popisujeme historii prahové kryptografie a shrnu-
jeme zakladni vlastnosti vicestrannych prahovych protokolt pro podepiso-
vani.

V roce 1987 Yvo Desmedt navrhl, Zze by kryptografie méla odrézet
strukturu nasi spole¢nosti a zavedl myslenku prahovych podpisi [1]. Mys-
lenka byla déle rozpracoviana a nésledné doslo k navrhu prvnich prahovych
podepisovacich protokoli zaloZenych na kryptosystému ElGamal [2] v roce
1989. V roce 1991 doslo k publikovani prahovych protokoli pro Siroce
rozifeny kryptosystém RSA [3]. Nasledoval névrh prahovych protokold i
pro kryptosystém (EC)DSA od Gennara et al. v roce 1996 s pfedpokladem
kompromitace méné nez poloviny ztucastnénych stran [4]. V roce 2001 pak
MacKenzie a Reiter navrhli ECDSA protokol speciélné pro pripad 2-ze-2
[5], ktery nemohl byt realizovan difvéjsim protokolem Gennara et al. V roce
2016 doslo k vytvofeni obecného protokolu k-z-n pro ECDSA s vyuZitim
tzv. Paillierova kryptosystému [6]. V rychlém sledu doslo k publikovani
dalsich variant [7, 8, 9, 10, 11] pfedstavenych po roce 2017. VSechny tyto

 https://github.com/crocs-muni/meesign-server
2https://github.com/crocs-muni/meesign-client

https://github.com/crocs-muni/meesign-server
https://github.com/crocs-muni/meesign-client

54. KONFERENCE EUROPEN.CZ 87

varianty jiz nepredpokladaly nadpoloviéni vét§inu nekompromitovanych
stran a snizovaly vypocetni a komunika¢ni slozitost, diky ¢emuz jsou jiz
prakticky implementovatelné na béznych zafizenich jako jsou notebooky a
mobilni telefony.

Zvygena aktivita ve vyzkumu a implementaci prahovych podpisii,
zejména ECDSA, byla v posledni dobé zptisobena piedevs$im jejich nasaze-
nim pro zlepSeni bezpe¢nosti a flexibility kryptoménovych penéZzenek. Tyto
technologie se v8ak jiz vyuzivaji i v dalSich oblastech napiiklad v DNSSec
nebo v bankovnictvi.

2.1 Zakladni vlastnosti prahovych protokoli

Ve schématu prahového digitalniho podpisu mé kazda z n stran (konkrétni
hodnota n je volitelnym parametrem pro danou instanci) podil soukromého
klice a definuje podmnozinu (kvorum) stran, ktera je pozadovana pro
vytvofeni vysledného podpisu.

Schéma prahového podpisu typu k-z-n je sada protokold s néasledujicimi
vlastnostmi:

1. Vs8ech n stran se ucastni generovani spole¢ného verejného klice. Kazda
ze stran ziskd po dokonceni generovani svou vlastni ¢ast soukromého
klice.

2. Jakakoli podmnozina stran o velikosti alespon k& miize vytvorit validni
digitalni podpis.

3. Zadna podmnozina o velikosti mensi nez k nemize vytvorit validni
digitalni podpis.

4. Béhem vytvareni podpisu nikdy nedochéazi k rekonstrukci celého
podepisovaciho kli¢e na jednom misteé.

5. Z4dna ze stran nemiize byt oklaméana k podpisu jiné zpravy, nez
predpoklada na zakladé podepisovaciho protokolu.

Prahové podpisy mohou byt zaloZzeny na raznych kryptografickych pri-
mitivech (naptiklad RSA, eliptické k¥ivky, bilinearni parovani nebo kryp-
tosystémy zaloZené na miizkach). Pro ucely praktické aplikace se vSak
zaméfujeme primérné na standardni, Siroce pouzivané kryptosystémy typu
RSA nebo ECDSA.

7Z hlediska potieby dlouhodobého uchovavani nékterych artefakta di-
kazniho Tizeni jsou relevantni i tzv. post-kvantové kryptografické systémy

88 Antonin Dufka, Jakub Janki, Ji¥i Gavenda, Petr Svenda

poskytujici bezpecnost vici dostateéné velkym kvantovym pocitactim. Zaro-
veni vSak jesté neni dokoncena standardizace téchto algoritmi a v dohledné
dobé tedy nelze ocekavat jejich Sirsi rozsifeni a zpétnou kompatibilitu
s existujicimi systémy.

3 Systém MeeSign

Systém MeeSign (Multi-party electronic evidence Signing) mé za cil po-
skytnout platformu pro digitalni podepisovani dokumenti nékolika samo-
statnymi uzivateli, ktefi tak vyjadiuji sviij souhlas s obsahem dokumentu.
Takto vznikly podpis je nerozlisitelny od standardniho jednostranného
podpisu, a tedy je kompatibilni se standardnimi néastroji pro ovéfovani
digitalnich podpist, avsak vyjadiuje akci vice osob.

3.1 Pouziti platformy

Uzivatelska zaffzeni si vygeneruji sviij vlastni identitn{ klicovy par (privatni
a vefejny kli¢) a pomoci svého verejného klice jako identifikatoru jsou re-
gistrovani do systému MeeSign. Béhem této registrace by mélo probéhnout
ovéreni identity vlastnika zarizeni a doplnéni jeho identifika¢nich tdaju,
podobné jako v pfipadé registrace u certifika¢ni autority.

Registrovana zafizeni mohou byt organizovina do tzv. podepisovacich
skupin, které realizuji vicestranné podepisovani. Pi vytvareni téchto skupin
je potieba zadat identifika¢ni informace skupiny, zvolit seznam tcastnicich
se zafizen{ a nastavit minimalni hranici (prah) stran, které se musi acastnit
podepisovani, aby vznikl validni podpis.

P1i vytvareni skupiny dochézi ke generovani skupinového klic¢e, pod
kterym bude skupina vydavat podpisy. Toto generovani vyzaduje vicekolovy
interaktivni protokol, ktery je provadén zafizenimi jednotlivych uzivateld,
ti v8ak musi svou tcast v protokolu (a tedy i v dané skuping) nejprve
potvrdit. Jakmile v8echny strany potvrdi svou tcast, protokol probéhne
transparentné a ucastnici jsou informovani o uspésném vytvoreni skupiny.

Skupinam mohou byt pfifazovany dokumenty k podepsani. Po pfifazeni
se tyto dokumenty zobrazi vSem ¢lentim skupiny, ktefi mohou potvrdit
¢i zamitnout Gcast v podepisovani daného dokumentu, ¢imz vyjadiuji
souhlas ¢i nesouhlas s jeho obsahem. Jakmile alesponn dana hranice uzi-
vatelii potvrdi svij souhlas s vytvoFenim podpisu (vynuceno na trovni
kryptografického protokolu), inicializuje se protokol vicestranného podepi-
sovani. Tento protokol vyuziva privatni kli¢e ulozené v zafizenich, ktera

54. KONFERENCE EUROPEN.CZ 89

MeeSign Server
MeeSign Interface

MeeSign Server handles network
connectivity to MeeSign Clients and
coordinates their communication.
Optionally, the server can interact
with other MeeSign Servers and
intermediate communication with

Message-based interface (GRPC) for easy
integration of MeeSign with preexisting
information systems.

their Clients.
MeeSign Interface MeeSign Interface MeeSign Interface
MeeSign Server MeeSign Server MeeSign Server
(RPi, PC) (RPi, PC) (RPi, PC)
/ I \ / MeeSign Client
" " MPC Protocol
WeeSion Meesion Weesign WeeSion MeeSign Cntis an appcation
which is registered with a MeeSign

Server. The application has access
to private keys and uses them in
MPC protocols with other MeeSign

MPC Protocols Clients.

Various MPC protocols for signing, decryption, randomness
generation running on MeSign Clients coordinated by MeeSign
Server.

Obrazek 1: Zakladni architektura aplikace MeeSign umoznujici zapojeni
riznych typl zafizeni a koordinaci vytvofeni vicestranného podpisu.

souhlasila s vydanim podpisu. Po dokonéeni jsou vSichni uzivatelé infor-
movani o tuspésSném vytvoreni podpisu dokumentu a tento dokument je
spole¢né s podpisem ulozen. Korektnost takto vzniklého podpisu lze ovérit
standardnimi néstroji pro ovéfovani podpisi PDF dokumenti.

V dalsich iteracich se planuje pfidani podpory pro podepisovani ji-
nych typt dokumentt, nastaveni politik pro podepisovani, moznost vyuziti
privatnich kli¢a v kryptografickych ¢ipovych kartach zprostiedkovanych
mobilnim zafizenim, zalohovani pomoci vicestranného desifrovani, a pro-

Yo

pojeni zafizeni napii¢ vice samostatnymi MeeSign servery.

3.2 Architektura

Navrh systému (Obréazek 1) se sklada ze serverové aplikace a instanci
klientskych aplikaci pro chytré mobilni telefony.

Serverova aplikace

Serverova aplikace poskytuje nésledujici funkcionalitu:

90 Antonin Dufka, Jakub Janki, Ji¥i Gavenda, Petr Svenda

1. uklada informace o registrovanych zafizenich, skupinach, stavech
protokolti a provadénych tlohéch;

2. poskytuje rozhrani pro konfiguraci, registraci novych zafizeni, spravu
skupin a zadavani aloh;

3. zprostfedkovava a koordinuje komunikaci mezi jednotlivymi zafize-
nimi.

Tato sluzba je implementovana v jazyce Rust. Rozhrani sluzby vyuziva
gRPC protokol pro snadnou integraci s jinymi systémy.

Klientska aplikace

Klientska aplikace je hlavnim pfistupovym bodem uzivatelt do systému
MeeSign. Tato aplikace ma za cil:

1. poskytnout uzivatelské rozhrani pro interakci se systémem MeeSign
— registraci zafizeni, vytvareni skupin, ucast ve skupinach, zadévani
a vykonavani podepisovacich tloh;

2. bezpecéné uchovavat privatni klice identity zafizeni, a i klice pro ticast
ve skupinéch;

3. realizovat sitovou komunikaci se serverem a piijimat notifikace v re-
alném cCase;

4. vykonavat kryptografické operace pomoci privatnich kli¢a pii acasti
ve vicestrannych protokolech.

Implementace je provedena v jazyce Dart s frameworkem Flutter, ktery
umozinuje jednotné vytvaret multiplatformni aplikace pro chytré telefony.
Pro realizaci kryptografické funkcionality se vyuziva prahového ECDSA
protokolu dle ndvrhu Gennara a Goldfedera [10] implementovaného v jazyce
Rust v knihovné ZenGo X [12].

Implementace

Nynéjsi verze systému umoziuje vytvaret ECDSA podpisy PDF do-
kumentii skupinami s nastavitelnym poctem stran — napf. 3-ze-3 (t¥i
uZzivatelé, vSichni se museji podilet na vytvoreni podpisu) nebo 2-ze-
3 (tf1 uzivatelé, libovolni dva mohou vytvorit digitalni podpis). Zdro-

jové kody jsou dostupné pod otevienou licenci v git repozitafich na

54. KONFERENCE EUROPEN.CZ 91

adresach https://github.com/crocs-muni/meesign-server a https:
//github.com/crocs-muni/meesign-client.

4 ZAavér

Prahova kryptografie je vhodnym néstrojem pro konstrukei digitalnich
podpist vyzadujicich sou¢innost vice stran, které jsou zaroven nerozlisitelné
od standardnich jednostrannych podpisi. Diky tomu mohou byt takto
vzniklé podpisy pfimo integrovany do stavajicich technickych feSeni a tedy i
kompatibilni s béznymi verifika¢nimi néastroji. Z téchto divodi vyuzivime
prahové kryptografie v platformé MeeSign — systému pro vicestranné
podepisovani elektronickych dokumenti.

Stavajici implementace poskytuje zakladni funkénost demonstrujici
definici parametra vicestranného protokolu, kolaborativni generovani klice
a vytvoreni digitalniho podpisu dokumentu ve formatu PDF. Pro budouci
iterace aplikace MeeSign je planovano postupné za¢lenéni novych protokoli,
podpora dalsich typt dokumentt, rozsifeni{ stavajicich rozhrani a umoznéni
interakce vice MeeSign serveru a jimi spravovanych zafizeni.

Podékovani

Tento ¢lanek vychézi z pribézné zpravy Identifikace poZzadavkia a navrh
technického FeSeni systému pro bezpecnou spravu el. dukazi za rok 2021
[13] z projektu MVCR Impakt VJ01010084 Elektronické dukazy v trestnim
Iizeni.

Odkazy

[1] Yvo Desmedt. ,,Society and group oriented cryptography: A new
concept. In: Conference on the Theory and Application of
Cryptographic Techniques. Springer. 1987, s. 120-127.

[2] Yvo Desmedt a Yair Frankel. , Threshold cryptosystems®. In: Conference
on the Theory and Application of Cryptology. Springer. 1989, s. 307-315.

[3] Yvo Desmedt a Yair Frankel. ,Shared generation of authenticators and
signatures®. In: Annual International Cryptology Conference. Springer.
1991, s. 457-469.

https://github.com/crocs-muni/meesign-server
https://github.com/crocs-muni/meesign-client
https://github.com/crocs-muni/meesign-client

92

(4]

]

(6]

7]

(8]

Bl

[10]

[11]

[12]

(13]

Antonin Dufka, Jakub Janki, Ji¥i Gavenda, Petr Svenda

Rosario Gennaro et al. ,Robust threshold DSS signatures®. In:
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 1996, s. 354-371.

Philip MacKenzie a Michael K Reiter. ,, Two-party generation of DSA
signatures”. In: Annual International Cryptology Conference. Springer.
2001, s. 137-154.

Rosario Gennaro, Steven Goldfeder a Arvind Narayanan.

, Threshold-optimal DSA /ECDSA signatures and an application to
bitcoin wallet security”. In: International Conference on Applied
Cryptography and Network Security. Springer. 2016, s. 156-174.

Yehuda Lindell. ,,Fast secure two-party ECDSA signing®. In: Annual
International Cryptology Conference. Springer. 2017, s. 613-644.

Jack Doerner et al. ,,Secure two-party threshold ECDSA from ECDSA
assumptions®. In: 2018 IEEE Symposium on Security and Privacy (SP).
IEEE. 2018, s. 980-997.

Yehuda Lindell a Ariel Nof. , Fast secure multiparty ECDSA with
practical distributed key generation and applications to cryptocurrency
custody*. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2018, s. 1837-1854.

Rosario Gennaro a Steven Goldfeder. ,,Fast multiparty threshold
ECDSA with fast trustless setup®. In: Proceedings of the 2018 ACM
SIGSAC. 2018, s. 1179-1194.

Rosario Gennaro a Steven Goldfeder. ,,One round threshold ECDSA
with identifiable abort“. In: Cryptology ePrint Archive (2020).

ZenGo X. Multi-party ECDSA.
https://github. com/ZenGo-X/multi-party-ecdsa. [cit. 22. duben
2022]. 2019.

Petr Svenda et al. Identifikace poZadavki a ndvrh technického tFeSeni
systému pro bezpecnou spravu el. dikazi. Zprava k feSeni vyzkumného
pilite Technologie (Bezpe¢né vicestranné digitalni podepisovani). 2021.

https://github.com/ZenGo-X/multi-party-ecdsa

BINARY OBFUSCATION USING THE LLVM
FRAMEWORK

Roman Oravec

Abstract

In the context of cybersecurity, obfuscation is a method of manipulating a com-
puter program with the intention to obscure its inner workings. Various obfusca-
tion techniques have found their use as a means to protect intellectual property
and to prevent code tampering, as well as to achieve malicious purposes, such as
creating malware that can circumuvent detection mechanisms. In this work, we
examine multiple commonly used obfuscating techniques and freely available tools
that implement them. Furthermore, we have implemented several obfuscating
transformations, leveraging the LLVM Pass Framework. The quality of the im-
plemented transformations has been tested and evaluated with respect to selected
metrics.

1 Introduction

As shown by Barak et al. [1], it is not possible to create a perfect obfuscation
and with enough time and resources, any program can be deobfuscated.
However, the goal of obfuscation is to discourage a reverse engineer from
analyzing or tampering the code, by transforming a program in a way that
any such attempts would be infeasible. This can provide useful as a means
to harden parts of a program that perform sensitive operations, such as
cryptographic functions.

Obfuscation is also widely used by malicious actors, who aim to produce
malware that can bypass automated analysis tools, e.g. an antivirus
software. Furthermore, their goal is to confuse a reverse engineer so that
it would take more time and resources to analyze the malware and develop
countermeasures. Both malicious and benign parties keep trying to come

94 Roman Oravec

up with more advanced obfuscating transformations as well as new reverse
engineering techniques, and the result is a form of a cat-and-mouse game
that accelerates the research in this area.

In a pivotal paper published in 1997 [2], Collberg et al. proposed a
variety of obfuscating transformations, together with recommendations on
how to categorize and evaluate them. Many techniques used in the present
are based on the ones described in this paper. Most of them can be sorted
into two categories — control obfuscation and data obfuscation. Techniques
in the first category manipulate the flow of control in the program, either
by breaking up or merging computations, randomizing their order, or
adding redundant code. The latter category includes transformations
that obscure data such as character strings and constants, for example
by changing their encoding or making the program compute them during
runtime, and thus not storing them statically as a part of the executable
file.

2 Obfuscating transformations

Collberg et. al [2] formally defines an obfuscating transformation as follows:

Definition 1 (Obfuscating transformation).
Let P 5 P’ be a transformation of a source program P into a target
program P’. P 5 P’ is an obfuscating transformation, if P and P’ have

the same observable behavior'. More precisely, in order for P Ty P’ to be
a legal obfuscating transformation, the following conditions must hold:

e If P fails to to terminate or terminates with an error condition, then
P’ may or may not terminate.

e Otherwise, P’ must terminate and produce the same output as P.

This definition states that applying the transformations should preserve
the input-output behavior of the program, but allows the obfuscated
version of the program to produce some additional behavior, for example
performing calls to the operating system or creating new files.

The transformations may, and usually do, increase the computational
complexity and memory requirements of the program.

!Regarding the program inputs, corresponding outputs, and program termination.

54. KONFERENCE EUROPEN.CZ 95

2.1 Opaque predicates

Opaque predicates are common but effective constructs used for obfuscation.
They are typically used to enhance other obfuscation methods, for example,
dead code insertion, or control-flow graph flattening. Constructing an
opaque predicate consists of transforming a simple boolean expression into
a complex one.

Definition 2 (Opaque predicate). A predicate P is opaque at point p in
a program, if its outcome is known at obfuscation time. We write Pf (PPT)
if P always evaluates to False (True) at p, and Pg if P may sometimes
evaluate to True and sometimes to False [3].

Based on the possible values of an opaque predicate, we can distinguish
two types:

Invariant opaque predicates. The value of the predicate is fixed,
i.e. the obfuscator knows whether it evaluates to True or False, but
its outcome is hard to deduce for the reverse engineer performing static
analysis.

Two-way opaque predicates. This type of predicates can evaluate
either to True or False for all possible inputs. Collberg et al. [2] suggested
using two-way opaque predicates as a branching point to two functionally
identical branches, which can be created by cloning a single branch and
applying different obfuscations on both of them. This makes the static
analysis of the program harder while preserving the original functionality.

2.2 Mixed Boolean-Arithmetic

A Mixed Boolean-arithmetic expression (MBA) is composed of integer
arithmetic operations on n-bit words (4, —, X, +) and bitwise operations
(A, V,®, 7). Zhou et al. [4] present a method to generate an unlimited sup-
ply of MBA transforms based on MBA expressions, MBA identities, and
invertible functions, which can be used to obscure secret constants, inter-
mediate values, and algorithms, while preserving the original functionality.
Together with opaque predicates, they can be considered building blocks
for creating or enhancing various obfuscating transformations. Below is
an example of constructing an MBA expression to obfuscate a constant
integer in the program:
Let:

o f be an invertible polynomial over Z/(2"Z)

96 Roman Oravec

o g=f"

e I/ an MBA expression non-trivially equal to zero, for example E =
rt+y—(zVy) = (- Vy)+(-x)

e (' a constant to be obfuscated.

To obfuscate C, we can encode it as C = g(E + f(C)). The following
example will show how the process works in practice. Suppose we are
performing calculations in Z/(2") with 32-bit words?, f is a linear function
with coefficient a being an odd integer, so that it is invertible mod 232
and b is an arbitrary integer, while all integer values are 32 bits large:

C = 123456
a = 1337
b=42

& = 1307300694
y = 2583472541
flx) =ax+b=1337x + 42
g(x) =atz+ (—a"'b)
= 133712 + (—133771 - 42)
= 11853724252 + 1753965702
E=z+y—(zVy) —(-zVy)+(-2)

Then we can encode C' as:

f(C) = 1337 - 123456 + 42 = 165060672 + 42
FE = 1307300694 + 2583472541 — 3724540895
— 3153898941 + 2987666601 = 0
C=glz+ty—(zVvy —(zVy)+ (-2)+ f(C))
= g(0 + 165060672 + 42)
= 1185372425 - 165060714 + 2541001594
= 123456 mod 232

2All calculations are mod 232.

54. KONFERENCE EUROPEN.CZ 97

The intermediate results of the functions f, g, and the MBA expression
FE are calculated during runtime, which makes it much harder to obtain
the value of C' during static analysis. The values of a, b, z,y can be either
randomly generated during compilation (obfuscation) time, or by injecting
a call to a random number generator that executes during runtime. The
third option is to use suitable program inputs or function arguments, which
would hinder deobfuscation techniques based on taint analysis®.

Guinet et al. presented a tool called arybo [5], which analyzes the
operations performed by MBA expressions at the bit-level. The tool is able
to significantly simplify MBA expressions, thus presenting a possibility to
circumvent this type of obfuscation.

2.3 Instructions Substitution

Instructions substitution is one of the most simple obfuscation techniques.
The principle of this method is to replace instructions containing binary
arithmetic operations, such as addition and subtraction, and binary boolean
operations, such as logical AND or XOR, with more complicated sequences
of code, which yield the same result.

Despite its simplicity, this technique is still used in current obfuscation
tools. For example, Obfuscator-LLVM uses simple substitutions using
expressions composed exclusively of arithmetic operations to substitute
addition and subtraction, and expressions composed of boolean opera-
tions to substitute boolean XOR, AND, and OR. Below are some of the
substitutions implemented in Obfuscator-LLVM:

r+y— —(—z+(-y))
oyt ()

zVy— (zAy)V(zdy)
z@y— (rAy)V(zA-y)

It is also important to note that the compiler can optimize out this
kind of transformation, therefore it should not be used for source-level
obfuscation. It also implies that it should be run after the optimization
passes if we are obfuscating at the intermediate representation level.

A reverse engineer could use an optimizer on the obfuscated binary file
to get rid of this transformation and reduce the complexity of the code

3Tracking flow of values in the program and identifying values and variables that
influence program’s outputs, as well as the control flow of the program.

98 Roman Oravec

for easier analysis. However, increased diversification of the code can still
be useful, for example, to bypass an antivirus engine that is performing a
static analysis of a program based on its signature, e.g., looking for known
malicious patterns and sequences of instructions.

2.4 Garbage Code Insertion

This technique consists of inserting arbitrary instructions into the program
without making an impact on the execution of the program. The total
number of different programs possible through garbage insertion is limited
from above by the total number of free bits available for program space,
which is limited only by available memory for program storage and is
clearly enormous [6].

Similarly to instructions substitution, the inserted code can be opti-
mized out, therefore it should be applied after optimizing the program
and it might get easily removed by a reverse engineer who is analyzing the
program.

This technique could be used to bypass simple automated malware
analysis engines, as it breaks the signature of the program. The garbage
instructions get executed, which adds complexity while performing dynamic
analysis of the program, but on the other hand, it might impact the
performance.

A simple example of this technique is inserting NOP instruction into the
assembly code. It does not have an impact on the program execution, but
it’s still reachable by the control flow of the program. A more advanced
way to apply this method, described in [6], is to insert spurious calls to the
operating system, which could lead the attacker to analyze a large amount
of garbage code and increase the time needed to perform the analysis.

Yadegari et al. [7] proposed a generic automated approach for deobfus-
cation of executable code based on taint analysis, which tracks the flow of
values from the program’s inputs to its outputs. This method can identify
instructions that do not affect the execution of the program and remove
the garbage instructions from the code.

2.5 Dead code insertion

Dead code insertion is a technique similar to garbage code insertion. The
main difference is that the dead code adds a branch to the control flow of

54. KONFERENCE EUROPEN.CZ 99

the program, but this branch is never taken during the execution of the
program.

This method was first introduced by Collberg et al. [2]. The paper
suggests, that there is a strong correlation between the perceived complexity
of a piece of code and the number of predicates it contains. This technique
could be further enhanced by using opaque predicates (2.1) — for example,
adding a condition with an opaque predicate, which creates a branching
point between a valid and a dead branch. The predicate would always
evaluate to True, making it impossible for the control flow of the program
to reach the redundant branch.

Another way to further confuse the reverse engineer, described in [2], is
to add dummy blocks of code to the redundant branches. For example, one
can clone a sequence of instructions from a valid block of code, introduce
a bug into it and place it into the redundant (dead) branch.

This transformation can be removed by utilizing optimization features
including in modern compilers, as well as performing the automated
deobfuscation approach proposed by Yadegari. et al. [7]. An attack
proposed by Salem and Bansescu [§], which is based on machine learning
and pattern recognition algorithms to identify obfuscating transformations
in the program, might also prove useful to a reverse engineer trying to
remove this type of obfuscation.

2.6 Control Flow Flattening

This transformation was first described by Wang et al. in [9]. The goal
of this technique is to obscure targets of the branches between the basic
blocks and thus to make the analysis of a program more difficult.

First, the basic blocks of the function are put on the same nesting
level, preceded by a new block, usually referred to as the dispatcher.
The dispatcher contains code that works as a switch statement, used to
determine which basic block is going to be executed next. In addition to
the dispatcher, a routing variable also needs to be created. Each time one
of the original basic blocks terminates its execution, the routing variable
is updated and the flow of control is transferred back to the dispatcher,
which forwards the control flow to the next basic block, in accordance with
the value stored in the routing variable.

The main issue with control flow flattening is finding a way to make the
information about the dispatcher, the routing variable, and its updating,
difficult to analyze. In its naive implementation, where the routing values

100 Roman Oravec

switch (var)

1 2 l3 0
True False A
@ Print a Print b

var = 0|

var = 2 var = 3|

| A A

Figure 1: Flowchart of a simple program returning a maximum of two
numbers, before and after flattening. Notice that the comparison and print
statements are on the same level of nesting after being flattened.

var = 0|

are hardcoded during the obfuscation (as in Figure 1), it’s easy to analyze
the code of the basic blocks and reconstruct the original control flow graph.

In [9], Wang et. al suggest the use of global pointers, as in some cases,
analysis of pointers can be proven to be NP-hard [10]. In contrast, the
authors of [11] propose using one-way functions, which are always hard to
analyze.

Another issue with this obfuscation method is the computational over-
head it introduces due to additional operations performed by the dispatcher.
Johansson et. al [12] proposed a novel method using lightweight dispatchers,
which present a similar level of complexity for the reverse engineer as ana-
lyzing a flattened program augmented with cryptographic hash functions,
while reducing the overhead by one or more orders of magnitude.

54. KONFERENCE EUROPEN.CZ 101

2.7 Evaluating Obfuscating Transformations

Determining the usefulness of an obfuscating transformation is a complex
task. When designing and evaluating an obfuscating transformation, one
needs to consider multiple criteria, such as how hard would it be for an
adversary (e.g., a reverse engineer) to understand the functionality of an
obfuscated program P’, how hard would it be to construct a deobfuscator,
or how much resources would a deobfuscator need to reconstruct the
original program P, given P’ as an input. Unless the deobfuscation
process is fully automated, these criteria will never be fully objective, since
they will always, at least partly, depend on the cognitive abilities of the
attacker.

Collberg et al. proposed some metrics [2], which can be used to quantify
and approximate the quality of obfuscation methods. They have defined
the following three criteria:

e Potency consists of various metrics which were originally designed
to be used to measure software complexity in the field of software
engineering, for example, the number of operators and operands in
P, number of predicates (cyclomatic complexity) in a function, or a
nesting level of conditional statements in a function.

e Resilience is measured on a four-point scale, ranging from trivial
to one-way. The value of resilience depends on two parameters —
programmer effort — how much time would a programmer need to
construct a deobfuscator to reduce the potency of a transformation,
and deobfuscator effort — time and space complexity of a deobfuscator
which can reduce the potency of a transformation. Programmer
effort is based on the scope of the transformation, from local to
inter-process, while deobfuscator effort could be either polynomial
or exponential.

e (lost of a transformation measures how much execution time and
space overhead would a transformation introduce to the obfuscated
program. This value is also measured on a four-point scale, ranging
from free (transformation adds a constant overhead) to dear (P’
requires exponentially more resources than P).

Mohsen and Pinto [13] proposed using Kolmogorov complexity [14]
to measure the quality of obfuscation. Kolmogorov complexity can be
described as the shortest length of a program, which can produce a

102 Roman Oravec

given object (e.g., a binary string, or an obfuscated program). Due
to the undecidability of the halting problem, exact Kolmogorov complexity
can not be computed. However, it can be estimated using compression
algorithms. More specifically, Kolmogorov complexity is the lower bound
of a compression algorithm.

The idea to use Kolmogorov complexity to quantify the quality of obfus-
cation is based on an assumption that obfuscation produces irregularities
in the obfuscated code (e.g., by inserting opaque predicates, or cloning
and diversifying basic blocks), thus making it less comprehensible for the
adversary. A program that contains more regular patterns can be com-
pressed with a higher rate, and thus has a lower Kolmogorov complexity.
In contrast, an obfuscated program would have higher Kolmogorov com-
plexity, which implies that it is a useful metric for evaluating obfuscation,
as shown in [14].

3 Open-source obfuscators based on LLVM
3.1 Obfuscator-LLVM

Obfuscator-LLVM aims to provide increased software security through
code obfuscation and tamper-proofing?. The project is a fork of the
LLVM compilation suite, therefore it works with the LLVM IR, utilizing
LLVM’s possibility of writing custom transformation passes. It supports all
programming languages and target platforms that are currently supported
by LLVM.

The open-source version® of the project implements three obfuscating
transformations:

1. Instructions Substitution is the most simple obfuscating transforma-
tion included in the project. It replaces simple binary operations with
more complex ones. Obfuscator-LLVM supports the substitution of
integer additions and subtractions and the Boolean operators AND
(&), OR (|) , and XOR (~). For example, the expression a = b A ¢ is
substituted as a = (b @® —¢) A b. Some of the operations have multi-
ple substitution candidates, which are chosen randomly to increase
code diversity. A full list of the implemented substitutions can be

4Preventing a user from modifying the software against the manufacturer’s wishes.
5The authors also developed a commercial version, providing additional transforma-
tions.

54. KONFERENCE EUROPEN.CZ 103

found in [15]. The substitutions are rather simple and according
to the authors, this transformation can easily be circumvented by
re-optimizing the generated code.

2. Bogus Control Flow modifies the control flow graph by inserting a
new basic block before an existing one. The new basic block ends
with an opaque predicate (2.1), which always evaluates to True,
making a conditional jump to the original basic block. The original
basic block is also cloned, randomly filled up with various junk
instructions, and inserted to the False branch leading from the
new basic block. This cloned block is never reached, because of the
invariant opaque predicate. The weakness in the implementation of
this transformation is that it uses just a single opaque predicate:

(y<10||z-(x—1) mod 2=0)

The two global variables, x and y, which are declared to construct
this predicate, can also give a hint on where the opaque predicates
are, which would make it easier for a reverse engineer to overcome
this transformation.

3. Control Flow Flattening is implemented in a naive way, as described
in Section 2.6 — by hard-coding the routing values during the obfus-
cation process. This implementation provides some resilience against
automated analysis tools, e.g. signature-based malware scanners,
but it does not propose a significant challenge for a reverse engineer
or automated tools performing a more complex static analysis.

Apart from the aforementioned obfuscating transformations, this tool
also implements a transformation pass for basic block splitting. This pass
introduces additional complexity to the transformations manipulating the
control flow.

The authors also added a feature to tag specific functions, which are
supposed to be obfuscated, in the source code of the program. This
way, the developers can reduce the negative performance impacts on the
program they are obfuscating, by omitting non-crucial functions from the
obfuscation process.

The GitHub repository, containing the open-source version, is not
being maintained since then as well. The authors of the project apparently
founded a startup named Strong.Codes, which has been later acquired by
Snap Inc. [16].

104 Roman Oravec

3.2 Armariris

This tool extends the Obfuscator-LLVM project by adding a string ob-
fuscation pass. By examining the source code of the project, we have
found out that this transformation is rather simple. Strings are just being
XOR-ed with a randomly generated integer (see the code snippet below),
and a simple decoding function is inserted at the beginning of the basic
block containing the encoded string. This function is then executed during
runtime.

This method prevents the strings from being viewed in plain by a
simple static analysis methods, such as using the strings GNU tool, but
it does not require a significant effort to decode them, since we just need
to find a right value for the XOR operation to obtain the original text.

cur->key = llvm::cryptoutils->get_uint8_t();
char *encr = const_cast<char *>(orig);

for (unsigned i = 0; i != len; ++i) {
encr[i] = origli] ~cur->key;
¥

dynGV->setInitializer(initializer);
gv->replaceAllUsesWith(dynGV) ;

3.3 Hikari

This tool is also based on the Obfuscator-LLVM project. However, it is
modified to support obfuscation of Objective-C projects. It also introduces
multiple new transformations:

e AntiClassDump, used to combat the class-dump® utility. However,
the documentation states that it is not yet fully implemented.

e Improved version of the Bogus Control Flow pass from Obfuscator-
LLVM, with dynamically-generated opaque predicates, instead of
the original hard-coded one.

o FunctionCallObfuscate works by scanning all CallSites that refer to
a function outside of the current translation unit then replaces then
with dlopen” and dlsym® calls.

Shttps://github.com/nygard/class-dump
"https://man7.org/linux/man- pages/man3/dlopen.3.html
8https://man7.org/linux/man- pages/man3/dlsym.3.html

https://github.com/nygard/class-dump
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://man7.org/linux/man-pages/man3/dlsym.3.html

54. KONFERENCE EUROPEN.CZ 105

o Function Wrapper simply creates dummy functions that wraps around
the actual function call.

e IndirectBranching Branching Instructions are replaced with indirect
branching, which is converted into register-based indirect calls on
supported backend. This makes disassemblers fail to predict the
complete control flow from static analysis.

e StringEncryption pass, which encodes the strings in a similar fashion
as Armariris. However, the key generation is more sophisticated (see
the code snippet below) and it also provides support for obfuscating
strings in Objective-C.

vector<uint8_t> keys;

vector<uint8_t> encry;

for (unsigned i = 0; i < CDS->getNumElements(); i++) {
uint8_t K7= cryptoutils->get_uint8_t();

uint64_t V™= CDS->getElementAsInteger(i);
keys.push_back(K) ;

encry.push_back(K ~ V);

}

4 Custom implementation and testing

This section describes our own implementation of obfuscating transforma-
tions using the LLVM framework. The implementation also builds upon the
foundations from Obfuscator-LLVM, while improving its currently avail-
able transformations and writing some new ones from scratch. Thanks to
the modularity of the LLVM pass framework, each of the transformation
passes can be applied independently, or combined in a sequence.

4.1 Design

Selected transformations are have been designed with regard to their
resilience against reverse engineering and impact on performance. Below
is a summary of the implemented passes:

o Instructions Substitution — Based on the method for generating MBA
identities proposed by Zhou et al. [4], Eyrolles has generated a list of

106 Roman Oravec

all rewrite rules composed of three boolean expressions [17]. We have
decided to implement a selection of those rules in the obfuscator.
For each binary operation®, the rewrite rule is picked randomly out
of three possibilities. to increase code complexity and diversity.

e Opaque Constants — Constant integers are being encoded using the
MBA expressions, as described in 2.2.

e Bogus Control Flow — We have replaced the original, hard-coded
predicate with two types of more advanced opaque predicates. The
first type is similar to the original implementation, but the pass
picks from a set of multiple arithmetic expressions, and it uses input
arguments of the obfuscated function for the variables x and y to
construct the expression. Since the formulas are always true for an
arbitrary integer, the predicate will always lead to a correct block.
The second type of predicates, referred to as Symbolic memory opaque
predicates, is based on a method described in [18].

e String Obfuscation — During compilation (obfuscation), the strings
can be encoded using an arbitrary function that transforms them.
Then, a decoding function is injected into the LLVM IR module.
Using the LLVM FEzecutionEngine, the encoding function can be
loaded from an external C source file, therefore this transformation
is not limited only to XOR-ing with a key, as in the case of other
available tools.

4.2 Testing

The test programs consist of a C++ implementation of SHA-512 hash
function'®, a C++ implementation of AES-CBC!! with 128-bit key, and
an implementation of QuickSort'? algorithm in C.

4.3 Potency

For testing potency, we have computed the software complexity metrics of
the obfuscated bitcode, and compared it to the non-obfuscated version.

9Namely addition, subtraction, AND, OR, XOR.
Onttps://github.com/martynafford/sha-2
Unttps://github.com/kkAyataka/plusaes
2https://www.programiz.com/dsa/quick-sort

https://github.com/martynafford/sha-2
https://github.com/kkAyataka/plusaes
https://www.programiz.com/dsa/quick-sort

54. KONFERENCE EUROPEN.CZ 107

Except for the Bogus Control Flow pass, the transformations do not
significantly change the Control Flow Graph of the program, since the
passes obfuscating constants and substituting instruction operate only in
the scope of individual basic blocks, while the pass obfuscating strings
manipulates global variables in the bitcode. It also injects a call to decode
the string, but this operation does not change the CFG in a significant way.
Therefore, we are going to use instruction count (p;) and Kolmogorov
complexity (u2) as metrics to evaluate the potency of obfuscations, and
avoid other metrics which are mostly influenced by the changes of the
CFG.

To obtain the values, we use the obfuscation-metrics tool'?, which
includes an implementation of a simple LLVM analysis pass that parses the
IR module and outputs the metrics. To compute Kolmogorov complexity,
the tool uses the zlib: :compress() function, which is included in the
LLVM libraries.

Table 1 shows the changes in software complexity metrics after applying
obfuscation, which allows us to estimate the potency of the transformations.
Values in the table show a ratio of metrics of an obfuscated and a non-
obfuscated program. Substitution x2 shows the effects of applying the
Instruction Substitution pass twice. String obfuscation 1 and 2 refer to
the two different string encoding functions — based on bit rotation and
bitwise XOR, respectively. The last four rows show the changes of the
metrics after applying multiple passes sequentially. The ordering of the
passes is discussed in detail in Section 4.3.

Combining the passes

After evaluating each pass individually, we have determined the following
sequence in which we apply all of the passes:

String obfuscation'* — Bogus — Opaque constants — Substitution.

The reasoning behind choosing this order of the passes is following:

e The String obfuscation pass injects new functions, which are not
obfuscated, therefore it is reasonable to apply this pass first, so the
subsequent passes can obscure these functions.

13https://github. com/b-mueller/obfuscation-metrics
14We have used the encoding and decoding functions based on bitwise XOR, since
they have proved to have a higher potency.

https://github.com/b-mueller/obfuscation-metrics

108 Roman Oravec

e Bogus Control Flow pass creates clones of the basic blocks, which
would be easily identifiable without subsequent obfuscation. The
opaque predicates are hardened and diversified by applying the
substitution pass.

e Expressions for hiding the constants also benefit from being applied
before the substitution pass, same as the opaque predicates.

e Instructions substitution pass has basically the smallest scope —
transforming single instructions. Since it might improve the resilience
and potency of all the other passes, it is applied last.

Table 1 shows that a combination of the passes results in significantly
higher potency. We also present the values of p; and ps when the passes
have been applied in a reverse order, where it is clearly visible how the
particular ordering of the passes can influence the potency. In this case,
the values are significantly lower than the original sequence.

Due to the randomness of the obfuscation (e.g., randomly selecting
the instruction substitution, randomly generating values for opaque con-
stants), there is a slight variance in the resulting metrics when comparing
obfuscated codes originating from the same program, after applying the
same transformation in multiple independent runs. However, the variance
was only around 4%, therefore we do not include the individual results of
multiple independent applications of the transformations in the table.

There is a noticeable pattern among all of the results in Table 1.
The number of instructions (u1) always increases more than Kolmogorov
complexity (u2). This implies that the transformations have a larger
influence on the size of the program, but they do not add irregularities to
the program at the same rate. We suppose that this ratio can be made
more even, if we add more diversity to the transformations, for example by
implementing more substitution candidates for the instructions, creating
arrays of various sizes for the symbolic memory opaque predicates, or by
inserting random sequences of junk instructions into the cloned blocks in
the Bogus Control Flow pass.

Performance impact

We have tested impact on the performance of the selected programs, and
their obfuscated versions, by generating random inputs of various sizes

54. KONFERENCE EUROPEN.CZ 109

Program SHA-512 AES QuickSort
Metric pr | pe pr | pe p | pe
Substitution 1.37 1.07 1.09 1.04 1.23 1.03
Substitution x2 2.25 1.26 1.34 1.13 1.82 1.11
Opaque constants 2.66 | 1.86 | 3.29 | 240 | 3.76 | 1.96
String obfuscation 1 1.05 | 1.04 | 1.01 | 1.02 | 1.19 | 1.12

String obfuscation 2 1.09 | 1.05 | 1.02 | 1.03 | 1.35 | 1.16
Bogus Control Flow 352 | 223 | 428 | 349 | 7.18 | 3.40

Str 2 + Bogus 3.72 | 2.35 | 4.40 | 3.64 | 10.64 | 4.44
Str 2 + Bogus + Const | 14.26 | 8.08 | 19.16 | 16.23 | 32.43 | 12.27
All 26.98 | 11.03 | 36.05 | 23.12 | 57.88 | 16.23
Reverse order 8.10 4.24 9.50 7.05 | 21.57 | 7.84

Table 1: Changes in software complexity metrics after applying obfuscation.
Values show a ratio of metrics of an obfuscated and a non-obfuscated
program.

and measuring the total number of CPU seconds that the process spent in
user mode!®.

An interesting observation we have noticed after evaluating the results
is that without the Bogus Control Flow pass, applying the passes in the
order String obfuscation — Opaque constants — Instructions substitution
resulted in better performance of the obfuscated program, than when this
order has been reversed. We have tested the same combinations of passes
(omitting the Bogus Control Flow pass) and the results were similar —
worse performance in case of the reverse order. However, the metrics pi;
and p9 have been slightly higher (~ 15%) for the programs obfuscated with
the original ordering of the transformations. This leads us to a conclusion
that the cost of a transformation does not always grow proportionally to
its potency.

Another important finding from measuring the computation time is
that the performance impact of all tested transformations is constant in
regard to the input size, which can be seen in the Figures 2, 3 and 4.

15Using the Bash time'® built-in utility

110

Performance of SHA-512

32.04

8.0

Time [s]

b

2.0+

0.5+

1x10" 2x10" 3x10" 4x10" 5x10" 6x10° 7x10" 8x10" 9x10’ 1x10°
Input size in bytes

Roman Oravec

variable

-
-
.

t

¥

All

All Reverse
Bogus
Constants
Substitution
Strings
None

Figure 2: Performance of a program computing the SHA-512 hash function.
The passes plotted as All and All Reverse have been applied in the order

described in Section 4.3.

Performance of AES-CBC encryption

64.00

16.00

4.00

Time [s]

t

1x10° 2x10° 3x10° 4x10° 5x10° 6x10° 7x10° 8x10° 9x10° 1x10
Input size in bytes

variable

-

-
.

¥

All

All Reverse
Bogus
Constants
Substitution
Strings
None

Figure 3: Performance of a program performing AES encryption with a
128-bit key in CBC mode. The passes plotted as All and All Reverse have

been applied in the order described in Section 4.3.

54. KONFERENCE EUROPEN.CZ 111

Performance of QuickSort

4.00-

variable
2,00+ /*' | Al
All Reverse
-+ Constants
-=- Substitution
Strings
None

Time [s]

0.50

1x10° 2x10° 3x10° 4x10° 5x10° 6x10° 7x10° 8x10° 9x10° 1x10
Number of array elements

Figure 4: Performance of a QuickSort algorithm. The passes plotted as
All and All Reverse have been applied in the order described in Section
4.3, except for Bogus Control Flow pass, which has been omitted.

5 Conclusion

In this work, we have explored obfuscation techniques that can be used
to increase the security of compiled code against reverse engineering and
other methods of analysis. Currently, a large amount of obfuscating
transformations exists. We believe that the transformations described in
this thesis are among the most used ones, as they (or their variants) can
be found both in obfuscation tools we have analyzed, as well as in multiple
research papers that deal with obfuscation or the countermeasures against
it.

We conclude that the use of Mixed Boolean-Arithmetic expressions is
relevant and has a big potential for designing obfuscating transformations.
Regarding manipulation of the control flow of a program, the most impor-
tant element is the design of resilient opaque predicates. Reverse engineers
currently tend to leverage the capabilities of various tools based on sym-
bolic execution and taint analysis, which aid them with understanding an
obfuscated program. Therefore, the main focus of the research in the area
of obfuscation is shifting towards countermeasures against such tools.

112 Roman Oravec

The results show that an increase in the size of the program (in terms
of instructions count) does not always increase its perceived complexity!”,
therefore measures to increase the code diversity, such as the use of
randomness, are crucial. Based on the results, we also conclude that
applying the transformations in a different order influences the resulting
program in a significant way, i.e. different ordering of the passes results in
different degrees of potency and performance impact. Since high potency
does not always correlate with high performance overhead, we suggest that
the ordering of the passes should always be based either on experimenting,
or specific heuristics with respect to the nature of the transformations, to
achieve optimal results. The cost of the implemented transformations has
been proved to be constant — the size of the input increases the computation
time of the obfuscated program proportionally to the increase with the
non-obfuscated version.

We reckon that there exist multiple commercially available obfuscating
tools that provide more advanced transformations than the ones described
and implemented in this work. However, we believe that this thesis
can serve as a good starting point, or a reference, for other researchers,
developers, and reverse engineers interested in this area. Together with
the implementation details, it can aid with developing and experimenting
with new obfuscating transformations, and help to spark innovative ideas.

References

[1] Boaz Barak et al. ,,On the (Im)possibility of Obfuscating Programs®. In:
IACR Cryptology ePrint Archive 2001 (Jan. 2001), p. 69. DOI:
10.1145/2160158.2160159.

[2] C. Collberg, C. Thomborson, and Douglas Low. ,,A Taxonomy of
Obfuscating Transformations®. In: 1997.

[3] Christian Collberg, Clark Thomborson, and Douglas Low.
»,Manufacturing Cheap, Resilient, and Stealthy Opaque Constructs®. In:
1998.

[4] Yongxin Zhou et al. , Information Hiding in Software with Mixed
Boolean-Arithmetic Transforms®. In: 2007.

17In other words, how it complicates the task of reverse-engineering the program.

https://doi.org/10.1145/2160158.2160159

54. KONFERENCE EUROPEN.CZ 113

]

(6]

7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

Adrien Guinet, Ninon Eyrolles, and Marion Videau. ,,Arybo:
Manipulation, Canonicalization and Identification of Mixed
Boolean-Arithmetic Symbolic Expressions®. In: GreHack 2016.
Proceedings of GreHack 2016. Grenoble, France, Nov. 2016. URL:
https://hal.archives-ouvertes.fr/hal-01390528.

Frederick B. Cohen. ,,Operating System Protection through Program
Evolution®. In: Comput. Secur. 12.6 (Oct. 1993), pp. 565-584. 1SSN:
0167-4048. poI: 10.1016/0167-4048(93)90054-9. URL:
https://doi.org/10.1016/0167-4048(93)90054-9.

Babak Yadegari et al. ,A Generic Approach to Automatic
Deobfuscation of Executable Code®. In: 2015 IEEE Symposium on
Security and Privacy. 2015, pp. 674—691. po1: 10.1109/SP.2015.47.

Aleieldin Salem and Sebastian Banescu. ,,Metadata Recovery from
Obfuscated Programs Using Machine Learning“. In: 2016.

Chenxi Wang et al. ,,Protection of software-based survivability
mechanisms®. In: 2001 International Conference on Dependable Systems
and Networks. IEEE. 2001, pp. 193-202.

William Landi. ,,Undecidability of Static Analysis“. In: 1.4 (Dec. 1992),
pp- 323-337. 1ssN: 1057-4514. por: 10.1145/161494.161501. URL:
https://doi.org/10.1145/161494.161501.

Jan Cappaert and Bart Preneel. ,,A general model for hiding control
flow”. In: Proceedings of the tenth annual ACM workshop on Digital

rights management. 2010, pp. 35-42.

Bjorn Johansson, Patrik Lantz, and Michael Liljenstam. ,,Lightweight
dispatcher constructions for control flow flattening. In: Proceedings of
the 7th Software Security, Protection, and Reverse Engineering/Software
Security and Protection Workshop. 2017, pp. 1-12.

Rabih Mohsen and Alexandre Miranda Pinto. ,,Evaluating obfuscation
security: A quantitative approach®. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 9482 (2016), pp. 174-192. 1sSN:
16113349. por: 10.1007/978-3-319-30303-1_11.

A N Kolmogorov. ,,On tables of random numbers“. In: Theoretical
Computer Science 207 (1998), pp. 387-395.

Pascal Junod et al. ,,Obfuscator-LLVM — Software Protection for the
Masses®. In: 2015 IEEE/ACM 1st International Workshop on Software
Protection. 2015, pp. 3-9. pol: 10.1109/SPR0.2015. 10.

https://hal.archives-ouvertes.fr/hal-01390528
https://doi.org/10.1016/0167-4048(93)90054-9
https://doi.org/10.1016/0167-4048(93)90054-9
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1007/978-3-319-30303-1_11
https://doi.org/10.1109/SPRO.2015.10

114

[16]

[17]

[18]

Roman Oravec

Swiss startup protects SnapChat. 2017. URL:
https://www.startupticker.ch/en/news/july-2017/swiss-startup-
protects-snapchat.

Ninon Eyrolles. ,,Obfuscation with Mixed Boolean-Arithmetic
Expressions : reconstruction, analysis and simplification tools®.
PhD thesis. June 2017.

Hui Xu et al. ,Manufacturing Resilient Bi-Opaque Predicates Against
Symbolic Execution®. In: 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 2018,

pp. 666-677. por: 10.1109/DSN.2018.00073.

https://www.startupticker.ch/en/news/july-2017/swiss-startup-protects-snapchat
https://www.startupticker.ch/en/news/july-2017/swiss-startup-protects-snapchat
https://doi.org/10.1109/DSN.2018.00073

DETECTION OF MALICIOUS CODE IN SSH
PROGRAMS

Adam Ruman, Daniel Koufil

Program analysis is crucial in digital forensics investigations and mal-
ware analysis processes. It is a challenging procedure, still relying on
manual methods and the guidance of knowledgeable individuals. In order
to streamline the analytic process, we have developed a set of techniques to
identify malicious code in applications deployed on the examined system.

In this paper, we concentrate on analyzing SSH programs since they
are ubiquitous tools enabling remote access to computer systems. SSH pro-
grams are also often the target of malicious actors who obtain illegitimate
access to the system. Therefore, having a way to analyze SSH binaries
quickly helps significantly when a potentially compromised system is being
investigated.

Our solution is based on similarity comparisons of suspected malware
samples to legitimate versions. It exploits the process’ interaction with
the operating system’s APL.

The API calls are structured into a graph. The structure depends on
the time the call was made and the file descriptor it was associated with.
Examples of such execution graphs are depicted in Fig. 1. They display a
pair of a legitimate SSH client and its maliciously modified version. The
visualizations are slightly skewed, but their closer examination shows an
extra branch in the graph of the modified program, which refers to malicious
code. The code is marked by the red line and depicts an exfiltration of
information over the network.

Our work focuses on methods that enable automated analysis and eval-
uation of programs, describing the differences. The solution is composed
of several partial areas.

To derive the information about system and library calls, we employ
methods of dynamic program analysis. By running the program and
monitoring its execution, we collect a list of calls and their attributes and
order. Based on this information, the call graph structure is established.

116 Adam Ruman, Daniel Koufil

Figure 1: API call graphs for an SSH client and its modified version

We produced call graphs of a number of legitimate SSH programs from
various Linux distributions. The outcome is a corpus used to analyze
unknown SSH samples.

When a sample is analyzed, its call graph is established first. It is then
compared to the legitimate programs in our collection. The closest match
is found based on a well-established graph similarity algorithm (Graph
Edit Distance) parametrized to our needs. The result is the identification
of a legitimate SSH program that was most likely used as the basis when
the malicious implementation was being prepared.

The second stage is to provide more detailed knowledge about the
nature of the malicious code. The suspect graph and its closest match
are processed using additional techniques to spot differences between the
two graphs on a more fine-grained level. The differences are reported
as another graph, suitable for further processing by a machine or to be
presented to the analyst.

The designed methods were prototyped as a set of tools that implement
all the described steps. The work has been conducted as part of the
development of a diploma thesis [1] that provides detailed descriptions of
all methods.

1 Evaluation of the comparison techniques

We have performed a set of experiments to validate the designed methods
and to assess the efficiency of the tool on maliciously modified programs.

54. KONFERENCE EUROPEN.CZ 117

The results help us define an interpretation of the produced results and
show us how conservative we have to be when assessing the similarity of
two programs.

All the experiments were carried out in virtualized environments
(Docker, VirtualBox, and VMWare), as we expect analysts not to use
live systems for malware assessment. In these experiments, we used the
password login setting. However, public keys and other methods like
Kerberos could also be used. We also limited ourselves to the part of the
SSH clients run, where user interaction happens.

1.1 Evaluation Over Legitimate Programs

For the purpose of assessing the (dis)similarity of legitimate SSH programs
we collected the following set of implementations:

e Manually compiled OpenSSH binaries based on source code-base
between versions 6.0 and 9.0.

e The latest OpenSSH binaries shipped by the following Linux distri-
butions: Centos 7, Debian Stretch, Debian Buster, Debian Bullseye,
Debian Bookworm, Ubuntu 16.04, Ubuntu 18.04.

e A binary of DropBear, an SSH implementation meant namely for
IoT devices.

We compared all the above mentioned programs, the graphical result
can be seen in Fig. 3 and 2. It is important to note that for these figures
the score of the comparison is not yet interpreted in any way, and the
color coding is just a simple 3-color uniform spread.

By analyzing the results of the comparisons over legitimate programs,
we can make the following observations:

e The diagonal, representing comparisons of the programs with them-
selves, always has the score of 100 and GED 0, which is exactly the
expected behavior.

e Most of the high-similarity groupings are located close to the diagonal,
thus, they are made of closely related versions.

e The further away two versions are, the score tends to be smaller.
The decrease, however, is not linear nor strict.

118 Adam Ruman, Daniel Kouiil

wiowH00q UeIgepUss
06uss
G-uss
gous
reus
ogus
GLus
aesing"ueigep™uss
Jeysngueiqapyss
§us
rous
O gimunan-uss
orens uegap uss
9uuss
suus
russ
eLus
69us
1dg'g-uss.

gouss
Souss
youss
couss
zouss
Vouss
ogouss

-

. po9mungn-yss

. 1drg-uss

oo -
s2 -

Figure 2: Comparison of legitimate SSH versions with Graph Edit Distance.

e Most changes in the OpenSSH binaries seem to happen rapidly, this
is no surprise, as both our graph comparison module and GED is
sensitive to new branches, and the manual analysis of the programs
shows this is what usually happens at those “borders”.

e We observed four groups within the collected versions with our
similarity score, which seem to be closely related. These groups are
defined by the aforementioned changes and are the following:

— Versions 6.0 — 7.8 and all the distribution versions derived from
them;

— Versions 8.0 — 8.3;

54. KONFERENCE EUROPEN.CZ 119

g !
2 g < & g 5 8
g [s 3] 7
AN A T A T R T Y
ﬁe‘55"56’56&&“"56*““ﬂ“““o%L“““‘L‘Ng-'s‘§~¢’ﬁ;§;‘g‘aﬁ;é’¢,!’,¢
2 3 5 6 o~ o 08 0 v o003 2 o885 o nso 232 00022 08w N a0
=neo] | m o
e N] u
ssh-6.2
ssh-6.3 -
ssh-6.4
ssh-6.5
ssh-6.6p1
ssh-6.7p1
ssh-centos7
ssh-6.8

ssh-6.9
ssh7.0

ssh-7.1p1

ssh-7.2p1
ssh-ubuntu16.04
ssh-7.2p2

ssh73

ssh74

ssh75

ssh76
ssh_debian_stretch
ssh-ubuntu18.04
ssh77

ssh7.8
ssh_debian_buster
ssh_debian_bullseye
ssh79

ssh-80

ssh-8.1

ssh-82

ssh-83

ssh-8.4

ssh-85

ssh-8.6

ssh-87

ssh-8.8

ssh-8.9

ssh-9.0
ssh_debian_bookworm
dbclient

Figure 3: Comparison of legitimate SSH versions with our Similarity Score.

— Versions 8.5 — 8.8;

— Versions 8.9, 9.0 and the distribution version from Debian
Bookworm.

e Some versions seem unique, while we can see the change in similarity
with further-away versions, they are not particularly close to their
neighbors. For example ssh-6.2, ssh-7.2p2 seems to be disjointed
from their neighbors, this is something that needs further manual
analysis. This is especially visible with our scoring system.

120 Adam Ruman, Daniel Koufil

e A visible anomaly in Figure 3 is the green(ish) area in the top-left
corner. Here, we can observe that the similarities between versions
change unpredictably in a range of close versions. While this could
be the results of some versions changing small functionality back-
and-forth, it is still worth of further investigation.

e The DropBear client is unique, this shows us that exotic versions
have to be taken care of, and as many of them as possible must be
in our database for comparison for the best results.

e Comparing the GED and similarity score heatmaps, we see how the
latter is more sensitive to small changes.

Further manual analysis of the mentioned outliers and anomalies shows
that their trace files are very similar, except the more unique versions
are missing the last couple of OS API calls. Having repeated the tracing
process a few more times, we noticed that the missing parts were not
consistently the same. By using other tools such as 1trace, we narrowed
down the problem to frida-trace’s’ behavior. It seems that in some
cases, the end of the process makes the frida thread finish before it could
log the OS API calls.

This inconsistency provides us a reason for other observed anomaly,
where the similarity was not decaying with version distances uniformly,
but rather fluctuating.

Score Interpretation Our experiments on legitimate programs give us
an insight into how these programs behave and how much deviation can
be considered “natural”. With this know-how, we are able to define an
interpretation for our scoring system.

What is left is to decide how conservative we want to be with our
interpretation. While this is user-specific, we would advise being open to
false positives rather than false negatives. This works well with the second
result of our tool, which is a graph highlighting the differences, which can
help an analyst make an educated choice more quickly. It is important to
note that the score — even with an interpretation — can not tell us whether
the differences are hazardous or harmless, but only how far they deviate
from the expected behavior.

Our final interpretation for SSH clients is:

'Frida is the tool utilized to collect information on calls performed by the process

54. KONFERENCE EUROPEN.CZ 121

e Score 100 — 93 — this score range should be taken as an indicator
of the programs being different only in very small implementation
details, and thus considered a valid binary.

e Score 93 — 75 — this score range indicates either multiple imple-
mentation differences or small functional changes. While we should
not totally rule out malicious modifications (as they might be really
small changes), the probability of it is rather small. This score can
also be achieved if the exact matching program is not present in the
database. We recommend at least taking a look on the highlighted
differences, and checking whether the found closest program is the
same as we should have on the system analysed (administrators
either have this information, but it can also be gathered with static
analysis or from network traffic).

e Score 75 — 0 — this score range indicates that the suspect binary is
with high probability modified. Further analysis should be made.

1.2 Evaluation Over Malicious Programs

Armed with the knowledge of the nature of legitimate SSH programs and
versions, and an interpretation scheme for the resulting scores of our tool,
we are able to test it on malicious binaries. For this we use a collection
of maliciously modified binaries that were found during investigation of
real incidents [2]. The collection consists of several families of trojanized
SSH binaries. A family consists of either multiple base versions of SSH
modified with the same malicious functionality, or the same version for
different architectures.

There are some samples which are not usable anymore, as the li-
braries they are linked to are not available (usually pre OpenSSH v6.0
programs linked to ancient OpenSSL libraries). Some others can be run
but crash upon their start, but the most interesting problem we ran into
was frida-trace not being able to collect some API call arguments for
some of the samples (for both x64 and Intel 80386 architectures).

Ultimately, 13 samples could be run and analyzed. The results of the
analysis can be seen in Table 1. For this experiments, we took the two
closest programs (with one exception — more about that in our discussion
of results), not just the best match, to see whether there is any relation
between the Graph Edit Distance and our Similarity Score. Let us discuss
our findings and observations.

122

Adam Ruman, Daniel Koufil

Malware Sample

Closest Legitimates

GED | Similarity

.] ssh_debian_stretch 82
Akiva_ Client 2 ssh-6.6 86
. ssh-7.6 17

Atollon_ Client 2 ssh-7.9 21
'] ssh-6.3 19
Bespin _Client_ 2 ssh_debian_bullseye 20
ssh-6.0 13

Crait_Client_2 ssh-6.1 13
ssh-7.1 13

.] ssh-9.0 46
Chandrila_ Client 2 ssh_debian _bookworm | 46
_ ssh_debian_stretch 90

Endor Client ssh-7.3 96
_ ssh_debian_stretch 90

Endor _Client 5 ssh-7.3 96
. ‘ ssh-6.4 12
Mimban_Client 2 ssh-6.7 14
)] ssh-6.4 12
Mimban _Client 3 ssh-6.0 20
] ssh-7.1 10

Onderon _Client 2 ssh-6.8 13
'] ssh-6.4 12
PolisMassa_ Client ssh-6.7 16
ssh-6.8 20

Ebury _Injected _Client ssh-ubuntu16.04 21

ssh-ubuntul®&.04

Table 1: Experiment results on malicious SSH clients.

54. KONFERENCE EUROPEN.CZ 123

The first important thing to note is that GED is not reversely propor-
tional to the similarity score in the general setting. A bigger GED does
between programs A and B than between programs C' and D does not
rule out that A and B will be more similar. We must take into account
the size of these programs (or rather, the size of the graph mined from
them). However in the local setting (comparing A to B and then A to C)
the reverse proportion usually holds (but it is not a rule, as GED is not as
customizable as we would like it to be).

We may also observe by combining the results from legitimate com-
parison programs that there is no transitive relations between the closest
programs based on GED. This means that for the two closest programs to
our suspect A and B, it does not need to hold that the closest program
to A based on GED is B. This seems to be different with our similarity
score where this transitive relation is tighter.

All the malicious programs are “caught” with our method, and the
defined interpretation of the score. We can observe that some of the
malware comes close to the similarity score limit (75) while others are
far down in score. By further manual analysis we can confirm that this
deviation is the result of how much and how “blatant” the malicious activity
is.

One of the most interesting malware samples is the Ebury _Injected Cli-
ent, which is unique, as the malicious code is not in the SSH binary itself,
but is injected into a library which is loaded. For this sample again, we
used the two best matches from the search module, but here the similarity
score difference is both reversed and much higher than we would expect
from the GED values. It is also important to note that the original SSH
binary we used was of Ubuntu 18.04, which is not the best match neither
based on GED or the similarity score.

Overall the experiments can be viewed as a success. All the malicious
programs we were able to get into working shape were correctly flagged.
On the other side, the cardinality of the samples is not too high, and thus
further trials could potentially uncover some cases that would be missed
by the tool in its actual state. The experiments also show that we could
combine multiple layers of information that can be collected for more
optimal results. Our choice of the tracing tool might not have been the
best for some use-cases. Fortunately, alternatives are quite straightforward
to integrate with our tools.

124 Adam Ruman, Daniel Koufil
2 Conclusion

Efficient ways for analysis of binary artifacts are crucial for any analyst
investigating a security incident. Using the methods described in the
paper, it is possible to perform analysis by automated workflow without
the involvement of an expert. The produced results can be examined by
an investigator who does not need specific knowledge of binary analysis.
This way, security teams can integrate quick verifications of SSH programs
during the initial investigation of an incident.

While the methods were developed primarily for SSH programs, the
principles employed are generic, and the mechanisms can also be used to
analyze other programs.

References

[1] Adam Ruman. Detection of Malicious Patterns in SSH Programs.
Diploma Thesis. Faculty of Informatics, Masaryk University. 2022.

[2] Romain Dumont, Marc-Etienne M.Léveill¢, and Hugo Porcher. The
Dark Side of the ForSSHe. URL: https://www.welivesecurity.com/wp-
content/uploads/2018/12/ESET-
The_Dark_Side_of_the_ForSSHe.pdf (visited on 03/27/2022).

https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-The_Dark_Side_of_the_ForSSHe.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-The_Dark_Side_of_the_ForSSHe.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-The_Dark_Side_of_the_ForSSHe.pdf

CREATION AND DETECTION OF MALICIOUS
SYNTHETIC MEDIA — A PRELIMINARY SURVEY ON
DEEPFAKES

Anton Firc, Kamil Malinka, Petr Hanacek

E-MAIL: IFIRCQFIT.VUT.CZ, MALINKAQFIT.VUT.CZ,
HANACEKQFIT.VUT.CZ

Abstract

Deepfakes present an emerging threat in cyberspace. Recent developments in
machine learning make deepfakes highly believable and very difficult to differenti-
ate between what is real and what is fake. Not only humans but also machines
struggle to identify deepfakes. Current biometrics systems might be easily fooled
by carefully prepared malicious synthetic media — deepfakes. We provide an
overview of deepfake creation and detection methods for selected visual and audio
domains. We put specific emphasize on the open-source solutions. We discuss
both facial and speech deepfakes, and for each domain, we define deepfake cate-
gories and differences between them and discuss available detection methods. For
each deepfake category, we provide an overview of available open-source tools for
their creation and datasets.

Key words: face deepfakes, voice deepfakes, biometrics systems, deepfake
detection, cybersecurity

126 Anton Firc, Kamil Malinka, Petr Hana¢ek

1 Introduction

Deepfake is a term that denotes a subset of synthetic media. The term
itself is just a combination of words deep learning and fake. Deepfakes
are created using deep neural networks, and they depict events that never
happened in order to entertain, defame individuals, spread fake news, and
others [1].

The constant advancements in machine learning make deepfake creation
available for a broader spectrum of computer users. The most simple tools
even feature a graphical user interface that lets inexperienced users create
deepfakes [2, 3, 4, 5|. This fact urges the investigation of what threats and
impacts deepfakes might have on cyberspace, as society is still not sure.
However, it seems that deepfakes only pose a threat to individuals, not to
nations or the whole world [6].

One of the sub-areas of harmful deepfake usage is spoofing biometrics
systems [7, 8]. Both voice recognition and facial recognition systems are
prone to be spoofed by synthetic media. Moreover, not every deepfake
type might have the potential to be used against biometrics systems.

In this work, we systematically overview the deepfake area from the
security point of view. The style and content of this survey aim to
provide a unified overview of the deepfake problematics to security-related
researchers and developers. In order to perform a security analysis focused
on deepfake resilience of biometrics authentication systems, it is necessary
to have orientation in all deepfake types, their properties, means for their
creations, and methods for their detection.

In our survey, we focus on deepfakes in facial and speech domains. We
divide facial deepfakes into categories according to the level of manipulation
needed, and as an extra category, we incorporate face morphing. We divide
voice deepfakes into categories according to the voice transfer technology.
For each category, tools and datasets are provided. Deepfake detection
methods are discussed as a whole for each domain.

Due to a high number of existing works, it is often hard to connect
current research results with existing tools implementing proposed methods.
We do not aim to provide extensive details on used technologies for creation
and detection. Thus, we rather provide a general overview of all the
concerned areas for the reader to gain an initial insight of deepfake creation
and detection.

The main contributions of this article might be summarized as follows:

54. KONFERENCE EUROPEN.CZ 127

e We provide an overview of deepfake creation tools. We also connect
them with the relevant research results, as they usually come from
different authors.

e We provide a comprehensive overview of the basics of deepfake
detection.

e We provide a united taxonomy for facial and speech deepfakes and
define differences between each category. The facial deepfakes are
categorized according to the level of manipulation needed, and the
voice deepfakes according to the voice transfer technology.

The face deepfakes are discussed in Section 2. The voice deepfakes are
discussed in Section 3. Section 4 summarizes all of the stated knowledge.

2 Face deepfakes

This section discusses available face deepfake creation tool, datasets and
detection methods. We define an united taxonomy of facial deepfakes
according to the level of manipulation needed. We provide a general
overview of the available open-source tools and publicly accessible datasets
for each category. Finally, we provide an overview of detection methods.

2.1 Categories

We divide face deepfakes into five categories depending on the level of
manipulation needed to create such a deepfake. From the highest level of
manipulation to the lowest: face synthesis, face morphing, face swap, face
reenactment and face manipulation. Examples of selected categories are
shown in Figure 1.

Face synthesis

We define face synthesis as a process of synthesizing non-existing faces
based on learned high-level attributes, such as pose or identity [9]. There
are different applications of face synthesis. They range from synthesizing
virtual characters in the film industry to providing a human-looking rep-
resentation of computer agents to interact with its users. Moreover, face
synthesis might be beneficial for face recognition applications to generate
needed amounts of training data [12].

128 Anton Firc, Kamil Malinka, Petr Hanacek

£
& .

Face synthesized using StyleGAN2 model [9]. Image retrieved from

https://thispersondoesnotexist.com.

Contributing subject 1 Morph Contributing subject 2

An example of face morphing [10].

Source Image Face Swapping Target Video Source Image Face Reenactment Target Video

Face swapping on the left and face reenactment on the right [11].

Figure 1: Examples of selected facial deepfake categories.

https://thispersondoesnotexist.com

54. KONFERENCE EUROPEN.CZ 129

Face morphing

Morphing is a special effect in motion pictures or animations that changes
one image into another using a seamless transition. Morphing is often
used to depict one person turning into another [13]. For the scope of this
work, we understand morphing as a method to produce a facial image that
is very similar to the face of one subject but also contains facial features
of the second subject.

Face swap

Face swapping refers to a technique where a face from source photo is
transferred onto a face in a target photo. The result is desired to look
realistic and unedited. For the scope of this work, we only refer to the
one-to-one face-swapping paradigm.

Facial reenactment

Facial reenactment is a process of photo-realistic facial re-animation of a
target video with expressions of a source actor. This method was formerly
proposed to provide the missing visual channel used in a scenario of a
digital assistant. It is essential that these methods not only generate audio
and visual information, but the audio has to be synced to the motions of
generated human visual [14].

Face manipulation

Face manipulation is a technique used to modify a specific part of a target’s
face in an image or video. The identity of the target remains unchanged.
The attacker is either able to add or remove features like facial hair, glasses,
and others, or to change/transfer the expressions, lighting or pose of the
head [15].

2.2 Tools

An overview of tools for face deepfake creation is provided in Table 1.
This list is not exhaustive and focuses solely on the tools available as
open-source projects.

Anton Firc, Kamil Malinka, Petr Hana¢ek

130

Face Face Facial Face
Name Link syn- morph- Face reenact- manipu-
thesis ing swap ment lation
StyleGAN3 [16] https://github.com/NVlabs/stylegan3
ProGAN [17] https://github. con/akanimax/pro_gan_pytorch
AdvFaces [18] https://github.con/ronny3050/AdvFaces
MMGeneration [19] https://github. con/open-mmlab/mgeneration
Face-Morphing https://github.con/Azmarie/Face-Morphing
Face Morphing https://github.con/cirbuk/face-morphing
Umm@ﬁwomﬁw_u EO_ https://github.com/iperov/DeepFaceLab

Realistic-Neural-Talking-

https://github.com/vincent-thevenin//Realistic-

v X X X X
v X X X X
v X X X X
v X X X X
X v X X X
X v X X X
X X v X X
Head-Models —M: Neural-Talking-Head-Models X X v X X
SimSwap [22] https://github. con/neuralchen/SimSwap X X v X X
FaceShifter [23] https://github.con/mindslab-ai/faceshifter X X v X X
FSGAN [11] https://github.con/YuvalNirkin/fsgan X X v X X
Deepfakes https://github. con/deepfakes/faceswap X X v X X
NeuralVoicePuppetry [14] https://github. com/miu200521358/NeuralVoicePuppetryMHD X X X v X
Face2Face _Mﬁ https://github.con/datitran/face2face-demo X X X v X
You said that? [25] https://github. con/ joonson/yousaidthat X X X v X
First Order Model [26] https://github.con/AliaksandrSiarohin/first-order-model X X X v X
Articulated Animation [27] nttps://github.con/snap-research/articulated- animation X X X X X
InterFaceGan |28, 29| https://github. com/genforce/interfacegan X X X X v
SkinDeep https://github.con/vijishmadhavan/SkinDeep X X X X v
StyleMapGAN [30] https://github. con/naver-ai/StyleMapGAN X X X X v
GAIA [31] https://github.con/timsainb/GATA X X X X v
ELEGANT [32] https://github.con/Prinsphield/ELEGANT X X X X v

Table 1: Open-source tools for face deepfake creation. Each line represents a different tool with link to

corresponding repository and an indication of what category of deepfakes does the tool create.

https://github.com/NVlabs/stylegan3
https://github.com/akanimax/pro_gan_pytorch
https://github.com/ronny3050/AdvFaces
https://github.com/open-mmlab/mmgeneration
https://github.com/Azmarie/Face-Morphing
https://github.com/cirbuk/face-morphing
https://github.com/iperov/DeepFaceLab
https://github.com/vincent-thevenin//Realistic-Neural-Talking-Head-Models
https://github.com/neuralchen/SimSwap
https://github.com/mindslab-ai/faceshifter
https://github.com/YuvalNirkin/fsgan
https://github.com/deepfakes/faceswap
https://github.com/miu200521358/NeuralVoicePuppetryMMD
https://github.com/datitran/face2face-demo
https://github.com/joonson/yousaidthat
https://github.com/AliaksandrSiarohin/first-order-model
https://github.com/snap-research/articulated-animation
https://github.com/genforce/interfacegan
https://github.com/vijishmadhavan/SkinDeep
https://github.com/naver-ai/StyleMapGAN
https://github.com/timsainb/GAIA
https://github.com/Prinsphield/ELEGANT

54. KONFERENCE EUROPEN.CZ 131

Table 2: Face deepfakes datasets. Each column represents dataset
counting data of one category of facial deepfakes. Some of the datasets
appear in multiple columns, as they contain deepfakes from more
categories.

Face synthesis Face Morphing Face swap
non-curated images’ Kramer et al. [33] WildDeepfake [34]
PGGAN [17] Raja et al. [35] VideoForensicsHQ [36]
iFakeFaceDB [37] FaceForensics++[38]
TPDNE [39] DFDC [40]
generated.photos [41] Celeb-DF [42]

DeeperForensics-1.0 [43]

Face reenactment Face manipulation

FaceForensics[44] Zhou et al. [45]
Dang et al. [46]
FaceForensics++(38]

"https://drive.google.com/drive/folders/1j6uZ_a6zciOHyKZdpDq9kSas8VihtEPCp

2.3 Datasets

The available datasets are shown in Table 2.

2.4 Detecting facial deepfakes

There are various feasible approaches for deepfake detection. Each of the
previously stated categories has its own methods and approaches suited
for detection. However, these methods and approaches are not exclusive,
and some of them are suitable to detect more types of facial deepfakes.
Rather than discussing the nuances between the detection of different
categories, we provide a comprehensive overview of basic principles used
for deepfake detection across all of the stated categories. We thus divided
the detection methods into four categories: artifact-based, deep learning-
based, spatiotemporal-based.

Artifact-based detection methods utilize the specific features and pat-
terns generated by GANSs in the images or videos. The media (image or

https://drive.google.com/drive/folders/1j6uZ_a6zci0HyKZdpDq9kSa8VihtEPCp

132 Anton Firc, Kamil Malinka, Petr Hana¢ek

video) are firstly pre-processed, to extract the desired features, then these
features are most commonly fed into a neural network that makes the final
decision about the realness of the provided media [47, 48, 49, 50, 51, 52,
53, 54, 45, 46, 55].

Deep learning-based detection completely relies on the abilities of deep
neural networks. Often, complex convolutional neural networks are used.
The network extracts self-learned features and classifies the image or video
as real or fake [56, 57, 58, 59, 60, 61].

Spatiotemporal-based methods mostly exploit the physical and physi-
ological signals. As the name suggests, temporal information is needed;
thus, these methods are only suitable for videos. The physical and physio-
logical signals are not well captured in deepfake videos and may include
spontaneous and involuntary physiological activities such as breathing,
pulse, eye movement, or eye blinking. As these signals are often overlooked
in the process of deepfake videos creation, they are suitable to be used as
indicators for detection [62, 63, 64, 65, 66, 67, 68, 69, 70].

The list of stated detection methods and approaches is not exhaustive.
Additionally, the stated categories are not exclusive, as we, for example,
see deep-learning-based approaches exploiting artifacts. This section thus
gives the reader a brief introduction to face deepfake detection.

3 Speech deepfakes

This section discusses available speech deepfake creation tools, datasets
and detection methods. Again, we define a united taxonomy according
to the voice transfer technology. Firstly, categories of speech deepfakes
are defined, then an overview of open-source tools and available tools is
provided. Finally, we discuss the basics of deepfake speech detection.

3.1 Categories

There are two main methods for creating deepfake speech: text-to-speech
synthesis (TTS) and voice conversion (VC) [71]. The main difference is
in the input data. TTS, as the name suggests, consumes written text
as input and produces synthesized speech that sounds like a particular
individual. VC, on the other hand, consumes a source voice saying desired
phrase and a target voice and outputs the source phrase spoken by the
target voice [72].

54. KONFERENCE EUROPEN.CZ 133
Text-to-speech synthesis

Text-to-speech (TTS) synthesis is a process of generating speech from
written text [73]. The goal of this process is to synthesize speech that
is not only easily understandable but also indistinguishable from the
speech spoken by humans [74]. This technique finds a place in providing
computer-human interfaces for smart assistants or navigation systems.

Voice conversion

Voice conversion is a technique used for modifying a given speech from
a source speaker to match the vocal qualities of a target speaker [75, 76].
In contrast to TTS, this process is independent of the spoken content
thus does not require transcriptions. Some of the most advanced voice
conversion frameworks can separately transfer components of speech such
as timbre, pitch, or rhythm [77].

Speech morphing

The term speech morphing refers to a technique of smooth transformation
from one signal to another. This combination creates a new signal with
an intermediate timbre [78]. The signals should be sufficiently similar
to become reasonably aligned and interpolated into the new signal [79].
Simply said, it is an combination of two voices to create an intermediate
one [75].

3.2 Tools

Table 3 provides an overview of open-source speech deepfake creation tools.
Currently, no tools are providing the speech morphing functionality solely,
we thus provide tools that are the most relevant to the speech morphing.

3.3 Datasets

The overview of deepfake speech datasets is shown in Table 4. As stated
previously in Section 3.2, the research regarding speech morphing is not
active. Thus, no dataset contains morphed speech.

Anton Firc, Kamil Malinka, Petr Hana¢ek

134

Table 3: Open-source tools for speech deepfake creation. Each line represents a different tool with link to
corresponding repository and an indication of what category of deepfakes does the tool create.

Tool Link TTs v o Speech
morphing
ZONH:N‘H&HM https://github.com/mozilla/TTS v\ X X
Real-Time-Voice-Cloning [80] https://github.com/CorentinJ /Real-Time-Voice-Cloning v X X
QO@CHH:H,@ https://github.com/coqui-ai/TTS .\ X X
TensorFlowTTS https://github.com/TensorSpeech/Tensorf1owTTS v X X
‘H,H.@EmmOH.EmH\H\Hw https://github.com/as- ideas/TransformerTTS .\ X X
HU~O<<S,OE —m: https://github.com/NVIDIA/flowtron .\ X X
Emotional TTS —mw_ https://github.com/Emotional-Text-to-Speech/dl-for-emo-tts v X X
<OSH,‘H<H,M ﬁww_ https://github.com/edresson/yourtts .\ .\ X
MUmmwOTmHv:ﬁ —ﬂd https://github.com/auspicious3000/SpeechSplit X v X
m,H.@mB@Sﬁ/\Q —m%_ https://github.com/yistLin/FragmentVC X .\ X
>&@Uﬁ<®<@ —mm_ https://github.com/jjery2243542/adaptive_voice conversion \& .\ X
MUMOOWQ;G —mg https://github.com/k2kobayashi/sprocket x .\ X
StarGAN —mi https://github.com/hujinsen/StarGAN-Voice-Conversion X v X
ZNMWO%OH®Q>Z|<O —mm_ https://github.com/GANtastic3/MaskCycleGAN-VC X .\ X
TJWQH.O https://github.com/symphonly/figaro X X v
VoiceMorphing Bttps://github . con/nestyne/voice-norphing X X v
ﬁ.v\/\owomOTmEmmH _ﬂa_ https://github.com/juancarlospaco/pyvoicechanger X X v

https://github.com/mozilla/TTS
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/coqui-ai/TTS
https://github.com/TensorSpeech/TensorflowTTS
https://github.com/as-ideas/TransformerTTS
https://github.com/NVIDIA/flowtron
https://github.com/Emotional-Text-to-Speech/dl-for-emo-tts
https://github.com/edresson/yourtts
https://github.com/auspicious3000/SpeechSplit
https://github.com/yistLin/FragmentVC
https://github.com/jjery2243542/adaptive_voice_conversion
https://github.com/k2kobayashi/sprocket
https://github.com/hujinsen/StarGAN-Voice-Conversion
https://github.com/GANtastic3/MaskCycleGAN-VC
https://github.com/symphonly/figaro
https://github.com/nestyme/voice-morphing
https://github.com/juancarlospaco/pyvoicechanger

54. KONFERENCE EUROPEN.CZ 135

Table 4: Speech deepfakes datasets. Each row represents a different dataset
with indication of deepfakes of what category does it contain.

Name TS
ASVspoof 2019 [89]
ASVspoof 2021 [90]
WaveFake [91]

FoR [92]
SYNSPEECHDDB [93]
FMFCC-A [94]

ANENANENANA N
NN X XNN <K
Q

3.4 Detecting deepfake speech

This section provides a more general overview of deepfake speech detection
to introduce the reader into the basics of this problem rather than an
exhaustive list of detection methods and corresponding publications.

The former attempts in deepfake speech detection frequently relied on
Hidden Markov Models (HMMs) or Gaussian Mixture Models (GMMs) [95].
Since then, deepfake creation technologies have advanced rapidly. This led
to the need for more reliable detection mechanisms. As a response, many
works started to utilize low-level spectro-temporal features that are being
fed into various classifiers [96, 97, 98, 95].

Latest approaches in contrast rely on deep learning, to extract the
best features [99, 100, 101]. Some of the methods even include data
augmentation to improve the detection robustness [102, 103, 104, 105, 106,
107].

In addition to the detection methods utilizing the speech signal or some
of its forms, Remaio and Tzerpos [108] or Khochare et al. [109] propose
detection of deepfake speech using an image-based approach. Additionally,
Wang et al. [110] propose a framework for a neural network-based speaker
recognition system that monitors the activations of neurons in different
network layers.

An analysis of the ASVspoof 2019 challenge revealed that the majority
of the deepfake detection systems are based on deep neural networks. The
best performance is obtained by combining score levels of single systems
that vary by input features or training procedure. For further development
of detection methods, it seems beneficial to use mixup techniques and FIR
filters for coded magnitude response emulation [111].

136 Anton Firc, Kamil Malinka, Petr Hana¢ek
4 Conclusions

As literature review shows, the deepfake creation tools are still on the
rise, and the development of detection methods tries to hold onto this
trend. The role of open-source tools in areas of deepfake creation and
detection is significant. As we demonstrate in this paper, extensive amount
of creation tools is provided as open-source tools. These tools often feature
a community of experts and enthusiasts that continuously improve them.
Moreover, the deepfake detection tools exist almost exclusively as public
GitHub repositories.

Acknowledgments

This work was supported by the internal project of Brno University of
Technology (FIT-S-20-6427).

References

[1] Jon Bateman. Deepfakes and Synthetic Media in the Financial System:
Assessing Threat Scenarios. Tech. rep. Carnegie Endowment for
International Peace, 2020, pp. i-ii. URL:
http://wuw.jstor.org/stable/resrep25783.1.

[2] Descript. Overdub. online. 2021. URL:
https://www.descript.com/overdub.

[3] Resmble AI. Resemble AI webpage. online. 2020. URL:
https://www.resemble.ai.

[4] Online Deepfake Maker. 2022. URL: https://deepfakesweb.com.

[5] Reface: be anyone and reface anything. 2022. URL:
https://hey.reface.ai.

[6] Valencia A. Jones. ,,Artificial Intelligence Enabled - Deepfake technology
The Emerge of a New Threat*. Master thesis. Utica College, 2020.

[7] Anton Firc. ,Applicability of Deepfakes in the Field of Cyber Security*.
Supervisor Mgr. Kamil Malinka, Ph.D. Master’s thesis. Brno: Brno
University of Technology, Faculty of Information Technology, 2021.

[8] John Seymour and Azeem Aqil. Your Voice is My Passport. 2018. URL:
https://www.blackhat.com/us-18/briefings/schedule/%5C#your-
voice-is-my-passport-11395.

http://www.jstor.org/stable/resrep25783.1
https://www.descript.com/overdub
https://www.resemble.ai
https://deepfakesweb.com
https://hey.reface.ai
https://www.blackhat.com/us-18/briefings/schedule/%5C#your-voice-is-my-passport-11395
https://www.blackhat.com/us-18/briefings/schedule/%5C#your-voice-is-my-passport-11395

54. KONFERENCE EUROPEN.CZ 137

9
(10]

[11]

[12]

(13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]
[21]

22]

Tero Karras et al. Analyzing and Improving the Image Quality of
StyleGAN. 2020. arXiv: 1912.04958 [cs.CV].

Sushma Venkatesh et al. Face Morphing Attack Generation & Detection:
A Comprehensive Survey. 2020. arXiv: 2011.02045 [cs.CV].

Yuval Nirkin, Yosi Keller, and Tal Hassner. ,FSGAN: Subject agnostic
face swapping and reenactment®. In: Proceedings of the IEEE
International Conference on Computer Vision. 2019, pp. 7184-7193.

Yang Wang, Zicheng Liu, and Baining Guo. ,,Face Synthesis“. In:
Handbook of Face Recognition. London: Springer London, 2011,
pp- 521-547. 1SBN: 978-0-85729-932-1. poOTI:
10.1007/978-0-85729-932-1_20. URL:
https://doi.org/10.1007/978-0-85729-932-1_20.

Matteo Ferrara, Annalisa Franco, and Davide Maltoni. , The magic
passport®. In: IEEE International Joint Conference on Biometrics. 2014,
pp. 1-7. DOI: 10.1109/BTAS.2014.6996240.

Justus Thies et al. Neural Voice Puppetry: Audio-driven Facial
Reenactment. 2020. arXiv: 1912.05566 [cs.CV].

Mariétte van Huijstee et al. Tackling deepfakes in European policy. 2021.
DOI: 10.2861/325063. URL: https://www.europarl.europa.eu/stoa/
en/document/EPRS_STU(2021)690039.

Tero Karras et al. ,,Alias-Free Generative Adversarial Networks®. In:
Proc. NeurIPS. 2021.

Tero Karras et al. Progressive Growing of GANs for Improved Quality,
Stability, and Variation. 2018. arXiv: 1710.10196 [cs.NE].

Debayan Deb, Jianbang Zhang, and Anil K. Jain. AdvFaces: Adversarial
Face Synthesis. 2019. arXiv: 1908.05008 [cs.CV].

MMGeneration Contributors. MMGeneration: OpenMMLab Generative
Model Toolbox and Benchmark.
https://github.com/open-mmlab/mmgeneration. 2021.

Ivan Perov et al. DeepFaceLab: Integrated, flexible and extensible
face-swapping framework. 2021. arXiv: 2005.05535 [cs.CV].

Egor Zakharov et al. Few-Shot Adversarial Learning of Realistic Neural
Talking Head Models. 2019. arXiv: 1905.08233 [cs.CV].

Renwang Chen et al. ,SimSwap: An Efficient Framework For High
Fidelity Face Swapping. In: MM ’20: The 28th ACM International
Conference on Multimedia. ACM, 2020, pp. 2003—2011. por:
10.1145/3394171.3413630. URL:
https://doi.org/10.1145/3394171.3413630.

https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2011.02045
https://doi.org/10.1007/978-0-85729-932-1_20
https://doi.org/10.1007/978-0-85729-932-1_20
https://doi.org/10.1109/BTAS.2014.6996240
https://arxiv.org/abs/1912.05566
https://doi.org/10.2861/325063
https://www.europarl.europa.eu/stoa/en/document/EPRS_STU(2021)690039
https://www.europarl.europa.eu/stoa/en/document/EPRS_STU(2021)690039
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1908.05008
https://github.com/open-mmlab/mmgeneration
https://arxiv.org/abs/2005.05535
https://arxiv.org/abs/1905.08233
https://doi.org/10.1145/3394171.3413630
https://doi.org/10.1145/3394171.3413630

138

23]
[24]
[25]

[26]

27]
28]
29]
(30]

(31]

32]

[33]

34]
(35]

(36]

Anton Firc, Kamil Malinka, Petr Hana¢ek

Lingzhi Li et al. ,,Faceshifter: Towards high fidelity and occlusion aware
face swapping“. In: arXiv preprint arXiv:1912.13457 (2019).

Justus Thies et al. Face2Face: Real-time Face Capture and Reenactment
of RGB Videos. 2020. arXiv: 2007 .14808 [cs.CV].

J. S. Chung, A. Jamaludin, and A. Zisserman. , You said that? In:
British Machine Vision Conference. 2017.

Aliaksandr Siarohin et al. ,,First Order Motion Model for Image
Animation“. In: Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc., 2019. URL:
https://proceedings.neurips.cc/paper/2019/file/
31c0b36aef265d9221af80872ceb62f9-Paper . pdf.

Aliaksandr Siarohin et al. ,Motion Representations for Articulated
Animation“. In: CVPR. 2021.

Yujun Shen et al. , Interpreting the Latent Space of GANs for Semantic
Face Editing®. In: CVPR. 2020.

Yujun Shen et al. ,,InterFaceGAN: Interpreting the Disentangled Face
Representation Learned by GANs“. In: TPAMI (2020).

Hyunsu Kim et al. Fzploiting Spatial Dimensions of Latent in GAN for
Real-time Image Editing. 2021. arXiv: 2104.14754 [cs.CV].

Tim Sainburg et al. Generative adversarial interpolative autoencoding:
adversarial training on latent space interpolations encourage convex
latent distributions. 2019. arXiv: 1807.06650 [cs.LG].

Taihong Xiao, Jiapeng Hong, and Jinwen Ma. ELEGANT: Exchanging
Latent Encodings with GAN for Transferring Multiple Face Attributes.
2018. arXiv: 1803.10562 [cs.CV].

Robin S. S. Kramer et al. ,Face morphing attacks: Investigating
detection with humans and computers®. In: (2019). por:
https://doi.org/10.1186/s41235-019-0181-4. URL:
https://cognitiveresearchjournal.springeropen.com/articles/
10.1186/s41235-019-0181-4#citeas.

Bojia Zi et al. WildDeepfake: A Challenging Real-World Dataset for
Deepfake Detection. 2021. arXiv: 2101.01456 [cs.CV].

Kiran Raja et al. Morphing Attack Detection — Database, Fvaluation
Platform and Benchmarking. 2020. arXiv: 2006.06458 [cs.CV].

Gereon Fox et al. ,,VideoForensicsHQ: Detecting High-quality
Manipulated Face Videos“. In: IEEE International Conference on
Multimedia and Expo (ICME 2021). Shenzhen, China (Virtual): IEEE,
2021. 1SBN: 978-1-6654-3864-3. DOI: 10.1109/ICME51207.2021.9428101.

https://arxiv.org/abs/2007.14808
https://proceedings.neurips.cc/paper/2019/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf
https://arxiv.org/abs/2104.14754
https://arxiv.org/abs/1807.06650
https://arxiv.org/abs/1803.10562
https://doi.org/https://doi.org/10.1186/s41235-019-0181-4
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-019-0181-4#citeas
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-019-0181-4#citeas
https://arxiv.org/abs/2101.01456
https://arxiv.org/abs/2006.06458
https://doi.org/10.1109/ICME51207.2021.9428101

54. KONFERENCE EUROPEN.CZ 139

[37]

(38]

[39]
[40]
[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

Jodo C. Neves et al. GANprintR: Improved Fakes and Evaluation of the
State-of-the-Art in Face Manipulation Detection. 2019. eprint:
arXiv:1911.05351.

A. Réssler et al. ,,FaceForensics++: Learning to Detect Manipulated
Facial Images®. In: International Conference on Computer Vision
(ICCV). 2019.

TPDNE dataset. online. 2021. URL: https:
//www.kaggle.com/potatohd404/tpdne-60k-128x128/version/2.

Brian Dolhansky et al. The DeepFake Detection Challenge Dataset. 2020.
arXiv: 2006.07397 [cs.CV].

Faces Generated by Al dataset. online. 2021. URL:
https://generated.photos/datasets.

Yuezun Li et al. ,,Celeb-DF: A Large-scale Challenging Dataset for
DeepFake Forensics“. In: IEEE Conference on Computer Vision and
Patten Recognition (CVPR). 2020.

Liming Jiang et al. DeeperForensics-1.0: A Large-Scale Dataset for
Real-World Face Forgery Detection. 2020. arXiv: 2001.03024 [cs.CV].

Andreas Rossler et al. FaceForensics: A Large-scale Video Dataset for
Forgery Detection in Human Faces. 2018. arXiv: 1803.09179 [cs.CV].

Peng Zhou et al. Two-Stream Neural Networks for Tampered Face
Detection. 2018. arXiv: 1803.11276 [cs.CV].

Hao Dang et al. ,,On the detection of digital face manipulation®. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern recognition. 2020, pp. 5781-5790.

Chih-Chung Hsu, Chia-Yen Lee, and Yi-Xiu Zhuang. Learning to Detect
Fake Face Images in the Wild. 2018. arXiv: 1809.08754 [cs.MM].

Francesco Marra et al. ,Detection of GAN-Generated Fake Images over
Social Networks®. In: 2018 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR). 2018, pp. 384-389. DOI:
10.1109/MIPR.2018.00084.

Belhassen Bayar and Matthew C. Stamm. ;A Deep Learning Approach
to Universal Image Manipulation Detection Using a New Convolutional
Layer®. In: Proceedings of the 4th ACM Workshop on Information
Hiding and Multimedia Security. IH&MMSec '16. Vigo, Galicia, Spain:
Association for Computing Machinery, 2016, pp. 5—10. ISBN:
9781450342902. po1: 10.1145/2909827.2930786. URL:
https://doi.org/10.1145/2909827.2930786.

arXiv:1911.05351
https://www.kaggle.com/potatohd404/tpdne-60k-128x128/version/2
https://www.kaggle.com/potatohd404/tpdne-60k-128x128/version/2
https://arxiv.org/abs/2006.07397
https://generated.photos/datasets
https://arxiv.org/abs/2001.03024
https://arxiv.org/abs/1803.09179
https://arxiv.org/abs/1803.11276
https://arxiv.org/abs/1809.08754
https://doi.org/10.1109/MIPR.2018.00084
https://doi.org/10.1145/2909827.2930786
https://doi.org/10.1145/2909827.2930786

140

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Anton Firc, Kamil Malinka, Petr Hana¢ek

Yuezun Li and Siwei Lyu. Ezposing DeepFake Videos By Detecting Face
Warping Artifacts. 2019. arXiv: 1811.00656 [cs.CV].

Nicolas Beuve, Wassim Hamidouche, and Olivier Deforges. ,DmyT:
Dummy Triplet Loss for Deepfake Detection“. In: ADGD ’21. Virtual
Event, China: Association for Computing Machinery, 2021, pp. 17-24.
ISBN: 9781450386821. pOI: 10.1145/3476099.3484316. URL:
https://doi.org/10.1145/3476099.3484316.

Oliver Giudice, Luca Guarnera, and Sebastiano Battiato. ,,Fighting
Deepfakes by Detecting GAN DCT Anomalies“. In: Journal of Imaging
7.8 (July 2021), p. 128. 1ssN: 2313-433X. DOI:
10.3390/jimaging7080128. URL:
http://dx.doi.org/10.3390/jimaging7080128.

Jun Jiang et al. ,Practical Face Swapping Detection Based on Identity
Spatial Constraints®. In: 2021 IEEFE International Joint Conference on
Biometrics (IJCB). 2021, pp. 1-8. DOL:
10.1109/IJCB52358.2021.9484396.

Zhiqing Guo et al. Fake face detection via adaptive manipulation traces
extraction network. 2020. arXiv: 2005.04945 [cs.CV].

Zhengzhe Liu, Xiaojuan Qi, and Philip Torr. Global Texture
Enhancement for Fake Face Detection in the Wild. 2020. arXiv:
2002.00133 [cs.CV].

Clemens Seibold et al. ,Detection of Face Morphing Attacks by Deep
Learning. In: Digital Forensics and Watermarking. Cham: Springer
International Publishing, 2017, pp. 107-120. 1SBN: 978-3-319-64185-0.

Ulrich Scherhag, Christian Rathgeb, and Christoph Busch. ,, Towards
Detection of Morphed Face Images in Electronic Travel Documents®. In:
2018 13th IAPR International Workshop on Document Analysis Systems
(DAS). 2018, pp. 187-192. pOI: 10.1109/DAS.2018.11.

Ulrich Scherhag, Christian Rathgeb, and Christoph Busch. ,,Morph
Deterction from Single Face Image: A Multi-Algorithm Fusion
Approach®. In: Proceedings of the 2018 2nd International Conference on
Biometric Engineering and Applications. ICBEA ’18. Amsterdam,
Netherlands: Association for Computing Machinery, 2018, pp. 6-12.
ISBN: 9781450363945. po1: 10.1145/3230820.3230822. URL:
https://doi.org/10.1145/3230820.3230822.

Poorya Aghdaie et al. ,,Detection of Morphed Face Images Using
Discriminative Wavelet Sub-bands“. In: 2021 IEEFE International
Workshop on Biometrics and Forensics (IWBF). 2021, pp. 1-6. DOIL:
10.1109/IWBF50991.2021.9465074.

https://arxiv.org/abs/1811.00656
https://doi.org/10.1145/3476099.3484316
https://doi.org/10.1145/3476099.3484316
https://doi.org/10.3390/jimaging7080128
http://dx.doi.org/10.3390/jimaging7080128
https://doi.org/10.1109/IJCB52358.2021.9484396
https://arxiv.org/abs/2005.04945
https://arxiv.org/abs/2002.00133
https://doi.org/10.1109/DAS.2018.11
https://doi.org/10.1145/3230820.3230822
https://doi.org/10.1145/3230820.3230822
https://doi.org/10.1109/IWBF50991.2021.9465074

54. KONFERENCE EUROPEN.CZ 141

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Matteo Ferrara, Annalisa Franco, and Davide Maltoni. ,,Face morphing
detection in the presence of printing/scanning and heterogeneous image
sources”. In: IET Biometrics 10.3 (Feb. 2021), pp. 290-303. 1SSN:
2047-4946. por: 10.1049/bme2.12021. URL:
http://dx.doi.org/10.1049/bme2.12021.

Darius Afchar et al. ,MesoNet: a Compact Facial Video Forgery
Detection Network®. In: 2018 IEEE International Workshop on
Information Forensics and Security (WIFS) (Dec. 2018). DOI:
10.1109/wifs.2018.8630761. URL:
http://dx.doi.org/10.1109/WIFS.2018.8630761.

Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In Ictu Oculi: Ezposing
Al Generated Fake Face Videos by Detecting Eye Blinking. 2018. arXiv:
1806.02877 [cs.CV].

David Giiera and Edward J. Delp. ,,Deepfake Video Detection Using
Recurrent Neural Networks®. In: 2018 15th IEEFE International
Conference on Advanced Video and Signal Based Surveillance (AVSS).
2018, pp. 1-6. po1: 10.1109/AVSS.2018.8639163.

Umur Aybars Ciftci, Ilke Demir, and Lijun Yin. , FakeCatcher:
Detection of Synthetic Portrait Videos using Biological Signals®. In:
IEEFE Transactions on Pattern Analysis and Machine Intelligence
(2020). 1SsN: 1939-3539. DOI: 10.1109/tpami.2020.3009287. URL:
http://dx.doi.org/10.1109/TPAMI.2020.3009287.

Pavel Korshunov and Sébastien Marcel. ,,Speaker Inconsistency
Detection in Tampered Video“. In: 2018 26th European Signal
Processing Conference (EUSIPCO). 2018, pp. 2375-2379. DOI:
10.23919/EUSIPC0.2018.8553270.

Rashmiranjan Das, Gaurav Negi, and Alan F. Smeaton. ,,Detecting
Deepfake Videos Using Euler Video Magnification®. In: Electronic
Imaging 2021.4 (Jan. 2021), pp. 272-272. 1sSN: 2470-1173. DOI:
10.2352/issn.2470-1173.2021.4 .mwsf-272. URL:
http://dx.doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-272.

Ilke Demir and Umur Aybars Ciftci. ,,Where Do Deep Fakes Look?
Synthetic Face Detection via Gaze Tracking®. In: ACM Symposium on
Eye Tracking Research and Applications. New York, NY, USA:
Association for Computing Machinery, 2021. 1sBN: 9781450383448. URL:
https://doi.org/10.1145/3448017.3457387.

Shruti Agarwal et al. ,,Protecting World Leaders Against Deep Fakes®.
In: Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. June 2019.

https://doi.org/10.1049/bme2.12021
http://dx.doi.org/10.1049/bme2.12021
https://doi.org/10.1109/wifs.2018.8630761
http://dx.doi.org/10.1109/WIFS.2018.8630761
https://arxiv.org/abs/1806.02877
https://doi.org/10.1109/AVSS.2018.8639163
https://doi.org/10.1109/tpami.2020.3009287
http://dx.doi.org/10.1109/TPAMI.2020.3009287
https://doi.org/10.23919/EUSIPCO.2018.8553270
https://doi.org/10.2352/issn.2470-1173.2021.4.mwsf-272
http://dx.doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-272
https://doi.org/10.1145/3448017.3457387

142

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]
(78]

[79]

(80]

(81]

Anton Firc, Kamil Malinka, Petr Hana¢ek

Shruti Agarwal et al. ,Detecting Deep-Fake Videos from
Phoneme-Viseme Mismatches®. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). 2020,
pp- 2814-2822. poI: 10.1109/CVPRW50498.2020.00338

Yipin Zhou and Ser-Nam Lim. , Joint Audio-Visual Deepfake Detection®.
In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). Oct. 2021, pp. 14800-14809.

Run Wang et al. DeepSonar: Towards Effective and Robust Detection of
AI-Synthesized Fake Voices. 2020. arXiv: 2005.13770 [eess.AS].

Engineering National Academies of Sciences and Medicine. Implications
of Artificial Intelligence for Cybersecurity: Proceedings of a Workshop.
Washington, DC: The National Academies Press, 2019. 1SBN:
978-0-309-49450-2. po1: 10.17226/25488. URL:
https://www.nap.edu/catalog/25488/implications-of-artificial-
intelligence-for-cybersecurity-proceedings-of-a-workshop.

Paul Taylor. Text-to-Speech Synthesis. Cambridge University Press,
2009. por: 10.1017/CB09780511816338

Youcef Tabet and Mohamed Boughazi. ,,Speech synthesis techniques. A
survey“. In: International Workshop on Systems, Signal Processing and
their Applications, WOSSPA. 2011, pp. 67-70. DOI:
10.1109/WOSSPA.2011.5931414.

Voice Conversion: A Critical Survey. Zenodo, July 2010. poI:
10.5281/zenodo.849853. URL:
https://doi.org/10.5281/zenodo.849853.

Kaizhi Qian et al. AUTOVC: Zero-Shot Voice Style Transfer with Only
Autoencoder Loss. 2019. arXiv: 1905.05879 [eess.AS].

Kaizhi Qian et al. ,,Unsupervised speech decomposition via triple
information bottleneck®. In: arXiv preprint arXiv:2004.11284 (2020).

Pedro Cano et al. ,,Voice Morphing System for Impersonating in
Karaoke Applications“. In: ICMC. 2000.

Hartmut R Pfitzinger. ,,Unsupervised speech morphing between
utterances of any speakers®. In: Proceedings of the 10th Australian
International Conference on Speech Science € Technology. 2004,
pp. 545-550.

Jemine Corentin. ,Real-time Voice Cloning“. Master thesis. Liége,
Belgique: Université de Liége, Liége, Belgique, 2019. URL:
https://matheo.uliege.be/handle/2268.2/680171locale=en.

Rafael Valle et al. Flowtron: an Autoregressive Flow-based Generative
Network for Text-to-Speech Synthesis. 2020. arXiv: 2005.05957 [cs.SD].

https://doi.org/10.1109/CVPRW50498.2020.00338
https://arxiv.org/abs/2005.13770
https://doi.org/10.17226/25488
https://www.nap.edu/catalog/25488/implications-of-artificial-intelligence-for-cybersecurity-proceedings-of-a-workshop
https://www.nap.edu/catalog/25488/implications-of-artificial-intelligence-for-cybersecurity-proceedings-of-a-workshop
https://doi.org/10.1017/CBO9780511816338
https://doi.org/10.1109/WOSSPA.2011.5931414
https://doi.org/10.5281/zenodo.849853
https://doi.org/10.5281/zenodo.849853
https://arxiv.org/abs/1905.05879
https://matheo.uliege.be/handle/2268.2/6801?locale=en
https://arxiv.org/abs/2005.05957

54. KONFERENCE EUROPEN.CZ 143

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

93]

[94]

Brihi Joshi et al. An exploration into Deep Learning methods for
Emotional Text-to-Speech. Version v1.0.0. June 2020. DOI:
10.5281/zenodo.3876081. URL:
https://doi.org/10.5281/zenodo.3876081.

Edresson Casanova et al. YourTTS: Towards Zero-Shot Multi-Speaker
TTS and Zero-Shot Voice Conversion for everyone. 2022. arXiv:
2112.02418 [cs.SD].

Yist Y. Lin et al. FragmentVC: Any-to-Any Voice Conversion by
End-to-End Extracting and Fusing Fine-Grained Voice Fragments With
Attention. 2021. arXiv: 2010.14150 [eess.AS].

Ju-chieh Chou, Cheng-chieh Yeh, and Hung-yi Lee. One-shot Voice
Conversion by Separating Speaker and Content Representations with
Instance Normalization. 2019. arXiv: 1904.05742 [cs.LG].

Kazuhiro Kobayashi and Tomoki Toda. sprocket: Open-Source Voice
Conversion Software. EasyChair Preprint no. 64. EasyChair, 2018. por:
10.29007/s4t1.

Hirokazu Kameoka et al. StarGAN-VC: Non-parallel many-to-many
votice conversion with star generative adversarial networks. 2018. arXiv:
1806.02169 [cs.SD].

Takuhiro Kaneko et al. ,,MaskCycleGAN-VC: Learning Non-parallel
Voice Conversion with Filling in Frames“. In: Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing.
2021.

Junichi Yamagishi et al. ASVspoof 2019: The 3rd Automatic Speaker
Verification Spoofing and Countermeasures Challenge database. 2019.
URL: https://doi.org/10.7488/ds/2555.

Junichi Yamagishi et al. ASVspoof 2021: accelerating progress in spoofed
and deepfake speech detection. 2021. arXiv: 2109.00537 [eess.AS].

Joel Frank and Lea Schonherr. WaveFake: A Data Set to Facilitate
Audio Deepfake Detection. 2021. arXiv: 2111.02813 [cs.LG].

Ricardo Reimao and Vassilios Tzerpos. ,,FoR: A Dataset for Synthetic
Speech Detection®. In: 2019 International Conference on Speech
Technology and Human-Computer Dialogue (SpeD). 2019, pp. 1-10. por:
10.1109/SPED.2019.8906599.

Zhenyu Zhang et al. SynSpeechDDB: a new synthetic speech detection
database. 2020. DOI: 10.21227/ta8z-mx73. URL:
https://dx.doi.org/10.21227/ta8z-mx73.

Zhenyu Zhang et al. FMFCC-A: A Challenging Mandarin Dataset for
Synthetic Speech Detection. 2021. arXiv: 2110.09441 [cs.SD].

https://doi.org/10.5281/zenodo.3876081
https://doi.org/10.5281/zenodo.3876081
https://arxiv.org/abs/2112.02418
https://arxiv.org/abs/2010.14150
https://arxiv.org/abs/1904.05742
https://doi.org/10.29007/s4t1
https://arxiv.org/abs/1806.02169
https://doi.org/10.7488/ds/2555
https://arxiv.org/abs/2109.00537
https://arxiv.org/abs/2111.02813
https://doi.org/10.1109/SPED.2019.8906599
https://doi.org/10.21227/ta8z-mx73
https://dx.doi.org/10.21227/ta8z-mx73
https://arxiv.org/abs/2110.09441

144

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Anton Firc, Kamil Malinka, Petr Hana¢ek

Tianxiang Chen et al. ,,Generalization of audio deepfake detection®. In:
Proc. Odyssey 2020 The Speaker and Language Recognition Workshop.
2020, pp. 132-137.

Massimiliano Todisco, Héctor Delgado, and Nicholas Evans. ,,A New
Feature for Automatic Speaker Verification Anti-Spoofing: Constant Q
Cepstral Coefficients®. In: Proc. The Speaker and Language Recognition
Workshop (Odyssey 2016). 2016, pp. 283-290. DoI:
10.21437/0dyssey.2016-41.

Zhizheng Wu, Eng Chng, and Haizhou Li. ,,Detecting Converted Speech
and Natural Speech for anti-Spoofing Attack in Speaker Recognition®.
In: 18th Annual Conference of the International Speech Communication
Association 2012, INTERSPEECH 2012 2 (Jan. 2012).

Zhizheng Wu et al. ,A study on spoofing attack in state-of-the-art
speaker verification: the telephone speech case®. In: Jan. 2012, pp. 1-5.
ISBN: 978-1-4673-4863-8.

Yanmin Qian et al. ,,Deep Feature Engineering for Noise Robust
Spoofing Detection. In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 25.10 (2017), pp. 1942-1955. potr:
10.1109/TASLP.2017.2732162.

Hossein Zeinali et al. ,,Detecting Spoofing Attacks Using VGG and
SincNet: BUT-Omilia Submission to ASVspoof 2019 Challenge*. In:
Proceedings of Interspeech. Vol. 2019. 9. Graz, AT: International Speech
Communication Association, 2019, pp. 1073-1077. poI:
10.21437/Interspeech.2019-2892. URL:
https://www.fit.vut.cz/research/publication/12086.

Yexin Yang et al. ,,The SJTU Robust Anti-Spoofing System for the
ASVspoof 2019 Challenge®. In: Sept. 2019. por:
10.21437/Interspeech.2019-2170.

Xinhui Chen et al. UR Channel-Robust Synthetic Speech Detection
System for ASVspoof 2021. 2021. arXiv: 2107.12018 [eess.AS].

Rohan Kumar Das. ,,Known-unknown Data Augmentation Strategies for
Detection of Logical Access, Physical Access and Speech Deepfake
Attacks: ASVspoof 2021%. In: Proc. 2021 Edition of the Automatic
Speaker Verification and Spoofing Countermeasures Challenge. 2021,
pp. 29-36. DOI: 10.21437/ASVSPOOF.2021-5.

Xinhui Chen et al. ,,UR Channel-Robust Synthetic Speech Detection
System for ASVspoof 2021%. In: Proc. 2021 Edition of the Automatic
Speaker Verification and Spoofing Countermeasures Challenge. 2021,
pp. 75-82. DOI: 10.21437/ASVSPOOF.2021-12.

https://doi.org/10.21437/Odyssey.2016-41
https://doi.org/10.1109/TASLP.2017.2732162
https://doi.org/10.21437/Interspeech.2019-2892
https://www.fit.vut.cz/research/publication/12086
https://doi.org/10.21437/Interspeech.2019-2170
https://arxiv.org/abs/2107.12018
https://doi.org/10.21437/ASVSPOOF.2021-5
https://doi.org/10.21437/ASVSPOOF.2021-12

54. KONFERENCE EUROPEN.CZ 145

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Tianxiang Chen et al. ,Pindrop Labs’ Submission to the ASVspoof 2021
Challenge*. In: Proc. 2021 Edition of the Automatic Speaker Verification
and Spoofing Countermeasures Challenge. 2021, pp. 89-93. DoOI:
10.21437/ASVSPOOF.2021-14.

Woo Hyun Kang, Jahangir Alam, and Abderrahim Fathan. ,CRIM’s
System Description for the ASVSpoof2021 Challenge®. In: Proc. 2021
Edition of the Automatic Speaker Verification and Spoofing
Countermeasures Challenge. 2021, pp. 100-106. DOI:
10.21437/ASVSPOOF.2021-16.

Joaquin Céceres et al. ,, The Biometric Vox System for the ASVspoof
2021 Challenge®. In: Proc. 2021 Edition of the Automatic Speaker
Verification and Spoofing Countermeasures Challenge. 2021, pp. 68-74.
DOI: 10.21437/ASVSPOOF.2021-11.

Ricardo Reimao and Vassilios Tzerpos. ,,Synthetic Speech Detection
Using Neural Networks®. In: 2021 International Conference on Speech
Technology and Human-Computer Dialogue (SpeD). 2021, pp. 97-102.
DOIL: 10.1109/SpeD53181.2021.9587406.

Janavi Khochare et al. ,A Deep Learning Framework for Audio
Deepfake Detection. In: Arabian Journal for Science and Engineering
(2021), pp. 1-12.

Run Wang et al. ,,DeepSonar: Towards Effective and Robust Detection
of AI-Synthesized Fake Voices®. In: Proceedings of the 28th ACM
International Conference on Multimedia. MM ’20. Seattle, WA, USA:
Association for Computing Machinery, 2020, pp. 1207-1216. 1SBN:
9781450379885. DOI: 10.1145/3394171.3413716. URL:
https://doi.org/10.1145/3394171.3413716.

Anton Tomilov et al. ,STC Antispoofing Systems for the ASVspoof2021
Challenge*. In: Proc. 2021 Edition of the Automatic Speaker Verification
and Spoofing Countermeasures Challenge. 2021, pp. 61-67. DOI:
10.21437/ASVSPOOF.2021-10.

https://doi.org/10.21437/ASVSPOOF.2021-14
https://doi.org/10.21437/ASVSPOOF.2021-16
https://doi.org/10.21437/ASVSPOOF.2021-11
https://doi.org/10.1109/SpeD53181.2021.9587406
https://doi.org/10.1145/3394171.3413716
https://doi.org/10.1145/3394171.3413716
https://doi.org/10.21437/ASVSPOOF.2021-10

54. KONFERENCE EUROPEN.CZ 147

HARDWAROVE AKCELEROVANA KRYPTOGRAFIE
s vyuzITiMm FPGA

Petr Jedlicka

1 Uvod

V poslednim desetileti nastal vyznamny pokrok v oblasti vyvoje kvanto-
vych pocitac¢i. Napiiklad spole¢nost IBM byla schopna v roce 2020 sestavit
kvantovy pocita¢ s 53 qubity [1]. V nésledujicim roce tataz spole¢nost
predstavila pocita¢ vyuzivajici 127 qubiti a do konce roku ma v planu
sestavit prvni kvantovy pocita¢ s vice nez 1000 qubity [2]. Za pFedpokladu,
ze bude vyzkum kvantovych pocita¢t pokracovat tempem, jez je nastinén
vyse uvedenymi ¢isly, je velkd pravdépodobnost, Ze v nasledujicim desetileti
bude lidstvo disponovat kvantovym pocitacem, jez bude schopen pomoci
algoritmi uréenych specialné pro kvantové pocitace prolomit kryptosys-
témy vyuzivajici problémy zalozené na diskrétnim logaritmu a faktorizaci
velkych ¢isel. V sou¢asné dobé jsou tyto kryptosystémy vyuzivany vétSinou
systému, kde je potfeba zajistit autenticitu, integritu a davérnost dat, coz
v budoucnu bude predstavovat bezpecnostni problém.

Odpovédi na tento problém je vyzkum v oblasti takzvané postkvan-
tové kryptografie, jez zahrnuje kryptosystémy, pro které v soucasné dobé
neni znam zadny typ tutoku, ktery by ohrozil jejich bezpeénost, a to jak
s pouzitim konvenéniho pocitace, tak i pocitace kvantového. Momentélné
probihé tfeti kolo standardizace kryptosystému pro postkvantovou krypto-
grafii pod zastitou NIST (National Institut of Standards and Technology)
[3]. Podle dosavadnich vysledku standardizace se jako nejperspektivnéjsi
ukazuji kryptosystémy zalozené na miizkach, jejichz problematika imple-
mentace na FPGA (Field Programmable Gate Array) bude piiblizena
v nasledujicich kapitolach tohoto ¢lanku.

148 Petr Jedlicka

2 Zakladni rozdily v praci s FPGA a s mikro-
procesorem

Zatimco mikroprocesor vykonéva jednotlivé instrukce na zakladé strojového
kédu ulozeného v paméti programu, FPGA umoziuje navrh libovolného
digitalniho obvodu, kterym je nakonec i samotny mikroprocesor, ktery je
na FPGA také moZné syntetizovat. Na rozdil od mikroprocesoru, jehoz
moznosti paralelizace jsou limitovany poc¢tem jeho jader, na FPGA je
mozné bez problému vytvofit stovky paralelnich procesti, kdy kazdy proces
miiZze byt tvoren dalsimi paralelnimi procesy.

Vyse popsané vlastnosti umoziuji na FPGA velmi rychlé vykonavani
operaci, jez jsou tvoreny fetézcem dil¢ich aritmetickych a logickych funkei,
které mohou bézet paralelné. Z hlediska mozZznosti paralelizace naopak
nejsou piili§ vhodné algoritmy, které pracuji v uzaviené smy¢ce (iteracich).
Nejméné vhodnou skupinu tvoii algoritmy, obsahujici rozsahlé rozhodo-
vaci struktury uréujici provedeni urcité operace. Implementace takovych
algoritmu ¢asto vede ke vzniku velkych kombina¢nich logik obsahujicich
mnoho kritickych cest, které snizuji maximalni taktovaci frekvenci dané
implementace. Optimalizace takovych algoritmua pro FPGA je mozné, ale
mnohdy komplikované.

3 Typické operace
v postkvantové kryptografii

Nejrozsitenéjsi typem operaci, kterou vnitiné provadi vSechny algoritmy
zalozené na miizkach, jsou aritmetické operace mezi maticemi a vektory
polynomu. Jako piiklad lze uvést nasledujici operaci nasobeni matice A
o rozméru k X [s vektorem y o délce [, kdy vysledkem je vektor w o délce
k. Operaci lze popsat nasledujici rovnici [4]:

w= Ay

Elementy matice a vektort jsou tvofeny polynomy 256. fadu. Aby bylo
mozné jednotlivé polynomy mezi sebou bodové vynasobit, ¢imz dojde
k vyraznému urychleni operace, je potieba je pfevést pomoci transformace
NTT (Number Theoretic Transform). [4]

V nésledujicich kapitolach bude pribliZzena problematika implementace
vybranych ¢asti postkvantovych algoritmi. Konkrétni pfiklady pochazi

54. KONFERENCE EUROPEN.CZ 149

z implementace digitalniho podpisu CRYSTALS-Dilithium a algoritmu
pro Sifrovani a distribuci klice CRYSTALS-Kyber.

4 Implementace transformace NTT

NTT transformace je algoritmus zalozeny na FFT (Fast Fourier Trans-
formation). Lisi se v8ak oborem ¢&isel, nad kterym pracuje. Zatimco FFT
pracuje s redlnymi ¢isly, NTT pracuje s celymi ¢isly v modularni aritme-
tice. [4]

Problémem pfi implementaci tohoto algoritmu je vykonavani v ite-
racich, kterych je pro polynom 256.Fadu celkem 8 (2% = 256). Vystupy
iterace slouzi jako vstup pro iteraci nasledujici, pric¢emz dochézi navic ke
zméné porad{ téchto vstupii, coz na prvni pohled vede k nevyhnutelnym
usekiim ¢ekani mezi iteracemi, avSak i takovy algoritmus je mozné pomoci
pokro¢ilejsich metod optimalizace paralelizovat a eliminovat tak doby
¢ekani na minimum.

Vypocet je mozné urychlit paralelnim nasazenim nékolika motylka
(z anglického oznaleni Butterly), coz je zakladni vypocletni struktura
algoritmu FFT i od né&j odvozeného NTT. V kazdé z paralelizovanych
iteraci se musi nachazet stejny pocet motylkt. Tento pocet zaroveih musi
odpovidat nasobku ¢sla 2”71, kde n je pocet paralelizovanych iteraci.
Toto pravidlo vychazi z matematické podstaty FFT a jeho odvozeni by
presahovalo rozsah ¢lanku. Pro paralelizaci dvou iteraci tedy staci 4 motylci
v rozloZeni 2 x 2 (2 motylci v kazdé iteraci) nebo 8 motylkid v rozloZeni 4 x 4.
Pro paralelizaci ve tfech iteracich by vSak jiz bylo potfeba minimalné 12
motylki. Je potfeba vzdy zvolit spravny kompromis mezi mirou paralelizace
a mnozstvim vyuzitych hardwarovych zdroji.

V dalsim kroku je mozné eliminovat ¢ekani mezi ,neparalelizovanymi
sadami® iteraci. Toho je mozné docilit st¥idavym vypoétem iteraci pro dva
polynomy, jejichz iterace jsou navzajem nezévislé. Naptiklad pro rozloZeni
2 x 2 by bylo pofadi nasledovné: iterace 1-2 pro polynom 1, iterace 1-
2 pro polynom 2, iterace 3-4 pro polynom 1, iterace 3-4 pro polynom
2, ... Blokové schéma implementované transformace s motylky 2 x 2 je na
obrazku 1.

Vstupni koeficienty, mezivysledky a vystupni hodnoty jsou ukladany
do 4 blokovych RAM paméti (BRAM). Roots of unity (ekvivalent twidle
faktorit u FFT) jsou ulozeny v ROM paméti. Ridici jednotka (control unit)

Petr Jedlicka

150
ready
start control unit
select ¢3X 200 7 0]
?5? g; 4x addr
: [6:0] roots of unity
3x18k ROM E—
data in BRAM we
[127:0] interface
switch data out [127:0]
— split
we
ian iam ¢a| iak
data out <
[127:Q

coefficients
4x18k
BRAM

data in
[127:0]

L

X<

<«

<—

merge

butterflies 2x2

Obrazek 1: NTT transformace

54. KONFERENCE EUROPEN.CZ 151

provadi ¢teni z obou paméti, data privadi na vstup motylku a jejich vystup
uklada zpét do BRAM paméti.

5 Implementace smycek

Dalsi ¢asti, kterou je pfi implementaci na FPGA potieba optimalizovat,
jsou smyc¢ky typu while, které jsou pritomny v algoritmech digitalnich
podpisii zaloZzenych na miizkach. V ptipadé podpisu CRYSTALS-Dilithium
je ve smyCce zahrnuto pfiblizné 80% vSech operaci, z nichZ je vétSina
Casové dost naro¢na. V piipadé sekvenéniho vykonévani téchto operaci
by vzdy byla aktivni pouze jedna komponenta. Paralelizaci této smycky
predchéazela uvaha, Ze jednotlivé procesy, které v ni jsou obsazeny mohou
pocitat vystupy i pro budouci iterace, aniz by bylo znamo, zda tato iterace
nastane. Jedinym kritériem pro provedeni vypoc¢tu danym procesem se
tedy stala dostupnost potfebnych dat na jeho vstupu. Ve vysledku tak
v8echny procesy ve smy¢ce bézi paralelné a v daném okamziku kazdy z nich
pocita vystupy pro jinou budouci iteraci. Blokové schéma implementace
digitalniho podpisu se znazornénou smyckou typu while je na obrazku 2.

Uvnitf komponenty se nachazi mnoho dil¢ich komponent, pro jejichz
detailni popis neni v tomto ¢lanku prostor. Nicméné lze dil¢i kompo-
nenty zjednodusené rozdélit do t¥i skupin: komponenty zaloZzené na NTT,
komponenty vyuzivajici haSovaci funkci Keccak a komponenty provadé-
jici aritmetické operace nad vektory a maticemi polynomit. Komponenta
podpisu pouziva pro komunikaci s okolim AXIStream rozhrani.

6 Implementace aritmetickych operaci

Aritmetické operace lze v porovnani s predchozimi dvéma operacemi
implementovat nejsnadnéji. FPGA obvody obsahuji vestavéné DSP (Digital
Signal Processing) bloky, které umoziuji akcelerovat aritmetické operace.
Typickym pfikladem je blok Montgomeryho redukce, ktery provadi redukci
po néasobeni v modularni aritmetice. Komponenta se sklddéd z Tetézce
nékolika aritmetickych operaci, které mohou paralelné pracovat. Blokové
schéma implementace Montgomeryho redukce je na obrazku 3.
Komponenta obsahuje 2 nasobicky a jednu s¢itacku. Pro vSechny tyto
¢asti byly na FPGA pouzity DSP bloky. Délka posuvného registru pro valid
signéal odpovida celkové latenci komponenty. Délka posuvného registru

152

Vi

Petr Jedlicka

"l‘\';(‘:‘ tho NTT(A)
A
Stream »| Expand A
si,
32, h 1
10 tr, K, msg o
>»| CcRH
mu
—— Y NTTy) Y
Xpan 2x NTT :
/ mask
! NTT(w)
E wi w
' NTT HashToBall[<€ Decompose 2x INTT
H (cs1,cs2,ct0)
' c
: w0
: v while
; — | 1xNTT cycle
E v
: st Y
: z
z —>D >
5 , .Y
! 6x INTT CS= = T - send
: % 7] check sign
{ v »| rejection
: h
' ct0 > —> | make hint | ——>
) - '
» J
z |h |c |.-7
"""""""""""""""""""""""""""" A 2 A Ak
Output
AXI R
Stream

Obréazek 2: Blokové schéma implementace podpisu

54. KONFERENCE EUROPEN.CZ 153

valid in valid in shift register valid out

N >

data in shift register
—> 1 -]]

data in v data out
[63:0] [31:0] [63:0] /T\[63:32] [31:0]

U

q q

Obrézek 3: Blokové schéma implementace Montgomeryho redukce

pro vstupni data, ktera jsou pouzivana na dvou mistech v komponenté,
odpovida souctu latenci nasobicek.

7 Zavér

V ¢lanku byly popsany metody optimalizace hardwarovych implementaci
pro nejcastéji se vyskytujicich operace v postkvantovych kryptografickych
schématech CRYSTALS-Dilithium a CRYSTALS-Kyber. Konkrétné se
jednalo o obecné aritmetické operace, NTT transformaci a smycky typu
while.

Ackoliv se jednalo o optimalizace pro konkrétni kryptosystémy, u kte-
rych v soucasné dobé nelze s jistotou Fict, zda se stanou standardem
pro postkvantovou kryptografii, Ize tyto metody optimalizace uplatnit i
u jinych algoritmi zaloZenych na miizkach.

Odkazy

[1] E. Pednault, J. Gunnels a D. Maslov. On “Quantum Supremacy”. 2019.
URL: https://wuw.ibm.com/blogs/research/2019/10/on-quantum-
supremacy/.

[2] J. Palyza. IBM predstavila novy kvantovy ¢ip: diky nému budou vijkonné
pocitace pusobit zastarale. 2021. URL:
https://www.chip.cz/novinky/ibm-predstavila-novy-kvantovy-
cip-diky-nemu-budou-vykonne-pocitace-pusobit-zastarale/.

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.chip.cz/novinky/ibm-predstavila-novy-kvantovy-cip-diky-nemu-budou-vykonne-pocitace-pusobit-zastarale/
https://www.chip.cz/novinky/ibm-predstavila-novy-kvantovy-cip-diky-nemu-budou-vykonne-pocitace-pusobit-zastarale/

154

3]

(4]

Petr Jedlicka

Dr. Lily Chen, Dr. Dustin Moody a Dr. Yi-Kai Liu. Post-Quantum
Cryptography. 2022. URL:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

Léo Ducas et al. ,CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme. In: TACR Transactions on Cryptographic Hardware
and Embedded Systems 2018.1 (tn. 2018), s. 238-268. DOI:
10.13154/tches.v2018.11.238-268. URL:
https://tches.iacr.org/index.php/TCHES/article/view/839.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839

PHISHINGATOR ANEB CVICNY PHISHING , NEJEN“
NA ZCU

Martin Sebela

Abstrakt

Priispévek se zabyvd vzdeéldvaci aplikaci Phishingator, kterd puvodné wvznikla
jako bakaldrskd prdce autora s cilem upozornit ma stdle se zvysujici hrozbu
phishingu. Aplikace umozniuje jednoduse vytvdret cvicné phishingové kampané,
které se sklddaji z vlastnich podvodnich webovijch strinek (napviklad falesného
prihldseni do univerzitnich systémaii) a z vlastnich podvodngch e-maili, které jsou
nasledné rozeslany konkrétnim prijemcim. Phishingator poté pribézné sleduje,
jakym zpusobem piijemci na podvodny e-mail a stranku reaguji a predevsim,
zdali se do ni nepokusili zadat platné pFihlasovact ddaje. KaZdému prijemci je
zdroveni poskytnuta zpétnd vazba s vyznacenymi indiciemi, na zdkladé kterych bylo
mozné phishing rozpoznat. Na ZCU bylo diky aplikaci Phishingator provedeno
712 nekolik cvicnych phishingovych kampani na riznd témata. Jak na cvicné
phishingové kampané reaguji uZivatelé v akademickém prostiedi, jak vypadd
typicky pribeh kampané ve Phishingatoru a je riziko phishingu na zdkladé vysledki
z Phishingatoru opravdu aktudlni?

1 Phishing

S podvodnymi e-maily (tzv. phishing) se pravdépodobné setkal jiz kazdy
z uzivateli e-mailové komunikace. Zatimco diive bylo mozné se setkat az
s témér usmévnymi e-maily o vyhrach v loterii nebo se zadosti o financo-
vani kosmického programu nékteré z africkych zemi, vzorky z poslednich
nékolika let ukazuji, Ze phishing miize byt i velmi sofistikovany. Utod-
nici rozesilany phishing neustéle vylepsuji, pfipadné i personalizuji vici
konkrétni organizaci (tzv. spear phishing) tak, aby byl divéryhodné&jsi.
Podvodné e-maily mohou rovnéz zneuzivat pravé probihajici situaci ve

156 Martin Sebela

svété. Z pohledu kybernetické bezpec¢nosti se navic jedna o nejcastéjsi
bezpecénostni incident. Phishing se ovem z e-mailové komunikace rozsifil i
do SMS a textovych zprav (tzv. smishing) nebo telefonnich hovort (tzv.
vishing). Cel4 fada uZivateli o phishingu bohuZel nevi, nebo si jeho riziko
stale nepripousti. A pravé na zakladé téchto divodi vznikl na ZCU na-
stroj Phishingator!, ktery dobrovolné registrovanym uZivatelim rozesila
cvi¢ny phishing a upozornuje na znaky, diky nimz lze rozpoznat skutecny
phishing.

2 Phishingator

Celym nazvem ,, Systém pro rozesilani cvicnych phishingovyjch zprdv* umoz-
huje administratortim v dané instituci (napiiklad na univerzitg) jednoduse
odesilat cviény phishing konkrétnim adresatim. Cilem je nenésilnou for-
mou upozornit na nebezpedi skuteéného phishingu a uzivateltim, ktefi
cviénému phishingu podlehnou, predat obratem zpétnou vazbu a zobrazit
indicie, na zakladé& kterych bylo mozné podvod rozpoznat.

2.1 Phishingova kampan

Administrator Phishingatoru (typicky zaméstnanec bezpe¢nostniho CER-
T/CSIRT? tymu) nejprve sestavi tzv. phishingovou kampaii.

Soucasti phishingové kampané je predevsim rozesilany podvodny e-
mail, ktery si administrator v systému vytvoi{ podobné jako v bézZném
e-mailovém klientovi. Jedinym rozdilem je pfidani tzv. indicii k phishingo-
vému e-mailu. Kazda indicie pfedstavuje jednu ozna¢enou pasaz v textu
e-mailu, na zakladé které muze uzivatel phishing rozpoznat. VSechny indi-
cie k danému podvodnému e-mailu jsou uzivateli zobrazeny tehdy, pokud
cvi¢nému phishingu podlehne nebo odesle formulaf na podvodné strance.
Uzivateli je diky tomu poskytnuta zpétna vazba, na co se mél v e-mailu
zamérit a moznost poucit se.

Administrator dale voli, jakid podvodna stranka bude s cviénym phishin-
gem svazana — tedy zdali se bude jednat napft. o podvodnou stranku davérné
napodobujici prihlaseni k univerzitnim systémtm nebo jen o generickou

https://phishingator.zcu.cz
2CERT = Computer Emergency Response Team, CSIRT = Cyber Security Incident
Response Team

https://phishingator.zcu.cz

54. KONFERENCE EUROPEN.CZ 157

prihlasovaci stranku na nesifrovaném protokolu HTTP. gablony podvod-
nych stranek, stejné jako domény, na kterych jsou cviéné podvodné stranky
hostovany, lze ve Phishingatoru také jednoduse nastavit.

V zéavéru administrator zvoli dobu trvani kampané a vyplni konkrétni
adresaty, ktefi cviény phishing v dany den a ¢as obdrzi. Jedinym tlac¢itkem
je nasledné celé phishingova kampan spuSténa a v realném cCase je mozné
sledovat, jak vybrani pfijemci na cvi¢ny phishing, potazmo podvodnou
stranku reaguji. U kazdého z adresati jsou rozliSovany nasledujici akce:

1. bez reakce na podvodny e-mail a podvodnou stranku,
2. navstéva podvodné stranky,

3. vyplnéni neplatnych prihlasovacich idaji do formuléfe na podvodné
strance,

4. vyplnéni platnych prihlasovacich adaji do formulafe na podvodné
strance.

Kazdy uzivatel, ktery na cviéné podvodné strance vyplni obsah formu-
lafe a nasledné jej odesle (tj. akce 3 a 4 z vySe uvedeného seznamu), je
obratem presmérovan na stranku s jiz zminénymi indiciemi, na zékladé
kterych bylo mozné konkrétni phishing rozpoznat.

Po ukonéeni phishingové kampané dochézi k odeslani e-mailové notifi-
kace vSem uzivateltim, ktefi byli souc¢asti dané kampané. Notifikace zaroven
obsahuje odkaz na stranku s indiciemi. I uzivatel, ktery cvi¢ny phishing
odhalil, tak mé& Sanci si prohlédnout, jaké vSechny indicie byly v cvi¢ném
podvodném e-mailu obsazeny.

2.2 Typicky pribéh phishingové kampané

V pocatku roku 2021 nékolik éeskych univerzit upozornilo na podvodny e-
mail, ktery jejich uzivatele informoval o ,kalendéafi planu mezd“ a obsahoval
typické znaky phishingu (viz obr. 1). Phishing zneuzival hlavicku jména
odesilatele, ve které byl uveden nézev univerzity, na niz tto¢nik cilil.
Utocnik i graficky vérné napodobil pfihlagovaci stranku danych univerzit.

Na ZCU nebyl podobny vzorek bezpe¢nostnim tymem registrovan, doslo
tak v rdmci cviéné phishingové kampané k rozesldni podobného phishingu
skrze aplikaci Phishingator. S cvi¢nym phishingem byla rovnéz svazana
i cviéna phishingova stranka, ktera vzhledové odpovidala pfihlaseni do

158 Martin Sebela

Kalendar planu mezd 2021 je nyni k dispozici (dulezity)

Stfeda, Bfezen 10, 2021 11:30 CET
. . 3 . . Komu
Zapadoceska univerzita

caitrin.engle@webzcu.cz msebela@civ.zcu.cz

Kalendar planu mezd 2021 je nyni k dispozici:

- http:/ /login.webzcu.cz/?ha0291dl

© zapadocfeska univerzita v Plzni

Tento e-mail byl zkontrolovan programem na viry.

Obrazek 1: Cvicny phishing rozeslany z aplikace Phishingator, ktery se
ovSem podobal skute¢nému phishingu.

systémi na Z(VJU7 hostovana byla ovSem na zakoupené doméné webzcu.cz
(oficialni doména ZCU je zcu.cz).

Cvi¢ny phishing byl nésledné rozeslan 173 vybranym zaméstnancim na
ZCU. Jak ukazuje tab. 1, prvni platna identita (tj. uzivatel do formulare
na cvi¢né phishingové strance vyplnil platné uzivatelské jméno a heslo)
byla ziskdna jiz v prvni minuté kampané.

Cas Milnik

11:30 Spusténi kampané a odeslani cvi¢ného phishingu.
11:31 Prvni navstéva podvodné stranky.

11:31 Ziskana prvni platna identita.

11:35 Ziskano jiz 8 platnych identit.

do 12:00 | Ziskano jiz 15 platnych identit.

Tabulka 1: Po¢atek udalosti cviéné phishingové kampané z aplikace Phishin-
gator.

54. KONFERENCE EUROPEN.CZ 159

Vysledky phishingové kampané pak ukazuji (viz graf na obr. 2), ze
ze 173 zamé&stnanci (napfi¢ fakultami a dal§imi souc¢astmi ZCU) tomuto
cvi¢nému phishingu, ktery odpovidal skute¢nému phishingu, podlehlo 22
zaméstnanci (12,7 %).

K ziskani vSech 22 platnych identit navic doslo uz béhem prvnich dvou

hodin kampané.

22/12.7 %

B zadani platnych udaja
zadani neplatnych udaja
24/139% pratye :
Al navstéva stranky
I bezreakce
118/68.2 %

Obrazek 2: Graf znazoriujici vysledky phishingové kampané z aplikace
Phishingator.

2.3 Reakce uZivatela

Na ZCU je aplikace Phishingator postavena pfedev§im na rezimu dobro-
volného piihlaseni — kdo mé zajem o cviény phishing, tomu staci se do
aplikace Phishingator prihlasit univerzitnim kontem a nastavit si, zdali
chce cviény phishing odebirat. Zaméstnanci bezpe¢nostniho tymu pak
nékolikrat v roce dobrovolné registrovanym uzivatelim rozeslou cviény
phishing.

Aplikace ovSem umoziuje odeslat e-mail i nap¥. zaméstnancim kon-
krétni katedry ¢i oddéleni. Na zakladé podnétu vedoucich nékterych kateder,
kterym byly moznosti Phishingatoru prezentovany, tak doslo i k cilenému
otestovani zaméstnanct v ramci periodického Skoleni bezpecnosti. Podobné
doslo k rozeslani cvi¢ného phishingu napfiiklad i studentim predmétu
o bezpecnosti v IT. I diky této formé upozornéni na phishing se nasledné
nékteri z vybranych uzivateli ptihlasili mezi dobrovolniky, ktefi cviény
phishing chté&ji také odebirat, a ziistat tak ve stiehu.

160 Martin Sebela

U uzivatell, kteti podlehli nékterému z prvnich obdrzenych cviénych
phishingti, 1ze navic pozorovat, ze dalsi cviéné phishingové e-maily jiz
uspésné odhalili. Pokud néktefi z téchto uzivateli navic nasledné obdrzeli
skute¢ny phishing, ktery jim pfipadal nebezpeény a méli jiz zkuSenost
diky aplikaci Phishingator, upozornili na obdrzeny podvodny e-mail pfimo
helpdesk ZCU.

Celkové vysledky za vSechny dosud realizované kampané z aplikace
Phishingator na ZCU ukazuji, Ze cviénému phishingu podlehlo 11,2 %
testovanych uzivateli.

3 ZAavér

Jak uz bylo zminéno v tvodu, cilem aplikace neni ziskat co nejvétsi mnoz-
stvi platnych identit uzivatel, ale predevsim uzivatele upozornit na hrozbu
a rizika skuteéného phishingu. Aplikace Phishingator tak muZe byt prak-
tickym doplitkem k teoretickym Skolenim o phishingu a bezpecnosti, a to
jak pro zaméstnance, tak pro studenty.

Vysledky cviéné phishingové kampané uvedené vysSe potvrzuji, Ze
phishing jako takovy si stale dokdze najit své obéti, které mu podleh-
nou. Pokud uZivatelim ov8em poskytneme nastroj, diky kterému budou
obezfetnéjsi a s phishingem se cviéné setkaji a budou o jeho hrozbé védeét,
muzeme procento Gspésnych phishingovych dtoki snizit. Je totiz lepsi, se
nanecisto spalit ve Phishingatoru a poucit se, nezli predat své prihlasovaci
tdaje utoc¢nikovi ve skuteéném phishingu.

PRACTICAL LESSONS OF (DEEP)FAKING HUMAN
SPEECH

Anton Firc, Kamil Malinka

E-MAIL: IFIRCQFIT.VUTBR.CZ, MALINKAQ@QFIT.VUTBR.CZ

Abstract

Deepfakes are an emerging threat to computer security. Various usages range
from spreading fake news to identity theft. A particular subset of this problem is
using deepfakes to spoof biometrics systems. The attacker spoofs an individual’s
identity by synthesizing his voice or appearance and uses this spoofed identity to
gain access into a system secured by biometrics authentication. In our former
research, we demonstrated that speech deepfakes present a threat not only to
voice biometrics systems but also to people. We presented that text-dependent
verification is more resilient to deepfakes than text-independent verification. This
paper aims to summarize our former research with its results and to highlight
the powerful role of open-source tools in this area.

Key words: deepfakes, biometrics, spoofing attack, impersonation

1 Introduction

The slang term deepfake has no agreed-upon technical definition; it is just
a combination of words ’deep learning’ and ’fake’ and primarily relates to
content generated by an artificial neural network. Deepfakes are a subset
of synthetic media created using deep neural networks that depict events
that never happened to entertain, defame individuals, spread fake news,
and many others [1].

162 Anton Firc, Kamil Malinka

The recent advancements in machine learning make the creation of
deepfakes easier than ever. Even people without any technical background
are able to use commercial tools with intuitive UI. These techniques and
tools are being used for both illicit and legitimate purposes. One of
the unexplored areas of illicit usage is using deepfakes to spoof speaker
recognition systems. Currently, the approach to this topic is exclusively
"technical." A significant amount of research gets published regarding
deepfake detection methods, deepfake creation methods, or improvements
in voice biometrics systems. However, there is still a missing link between
these areas, where the proposed detection methods are tested in production
environments, tested against state-of-the-art deepfakes, and finally imple-
mented into real-world biometrics systems. This is where our research
aims to fill the missing gaps and links, explore the current readiness of
voice biometrics systems against deepfakes, and the steps to be taken to
improve the resilience and security of deployed biometric systems.

Section 2 discusses our former research on the resilience of voice bio-
metrics systems to deepfakes and the human ability to detect deepfakes
and Section 3 concludes all of the discussed information.

2 Former research

As previously stated, one of the unexplored areas of illicit deepfake usage
is using deepfakes to spoof voice biometrics systems. There are mixed
opinions on the feasibility of such attacks and minimal scientific evi-
dence [voicebot, 2, 3, 4, 5|. Our prior work [6, 7| evaluated the current
state of readiness of voice biometrics systems and people to face deepfakes.
This section describes our motivation, presents the attack schema, and dis-
cusses the experiments executed to assess the resilience of voice biometrics
systems against deepfakes and the human ability to distinguish between
real and deepfake speech.

2.1 Motivation

Up to date, no experiments regarding the deepfake resilience of voice
biometrics systems in real-world environments exist. We decided to analyze
the current situation and assess the advancements of deepfake technology
and the difficulty of executing a deepfake powered attack on a scenario
of customer verification in a customer care call center. In this scenario,

54. KONFERENCE EUROPEN.CZ 163

the communication is made exclusively using the telephone, and the voice
biometrics system has to be spoofed as well as the human operator. The
scenario and complete attack schema is described in Section 2.2.

2.2 Attack schema

As mentioned in our motivation, our first goal is to examine how difficult
it is to spoof voice biometrics systems using deepfakes and what measures
might be taken to mitigate the threats posed by deepfakes to voice biomet-
rics systems. The second goal is to evaluate the human ability to identify
deepfakes.

We decided to focus on the area of customer verification in call centers
(see Figure 1). A non-malicious scenario involves the customer making a
telephone call to the call center. Both the voice biometrics system and the
operator have to verify the customer’s identity.

In a deepfake scenario of an attack on a customer care call center, the
attacker synthesizes utterances with a speech of his victim in advance.
The attacker then makes a phone call to the customer care service and
begins to replay the prepared utterances to verify his identity and initiate
an unauthorized action of his choice. The success of this scenario relies on
the deepfake ability to spoof voice biometrics systems as well as humans.

Attacker model

An attacker is a person with the ability to create voice deepfakes, and his
goal is to gain access into a system secured by voice authentication, such
as a bank call center. The attacker is in possession of all needed personal
information about his victim, all needed details about the typical scenario
of the voice authentication process, and finally samples of voice belonging
to the victim.

The attacker will use all of this information to synthesize utterances
reproducing the victim‘s speech, and then in the most believable way
possible, try to access the system secured by voice biometrics system and
use the granted access to his advantage.

Victim model

A victim is any person that uses her’s or his voice to authenticate into
any system. We also expect the victim to be a regular computer user or

164

Customer verification -

. Qe

Anton Firc, Kamil Malinka

Non-malicious

Voice biometrics system

Customer verification - Malicious

Voice
retrieval

%@

Active

nuﬁ@

Passive

@@

Speech
sytnhesis

’
Attacker's
content

[}

Bank

Voice biometrics system

Figure 1: Attack schema. Figure A represents non-malicious (genuine)
access to customer care call center, Figure B represents malicious access
with target voice retrieval phase and speech synthesis.

54. KONFERENCE EUROPEN.CZ 165

possess a telephone. The voice samples of the victim can be retrieved from
any of the content posted online or by recording a phone call.

2.3 Spoofing voice authentication

This section describes the experiments executed to assess the resilience of
voice biometrics systems to deepfakes. To evaluate the threats posed by
an inexperienced attacker, we decided to create our deepfake dataset using
an open-source text-to-speech synthesis tool. Using the created dataset
and two voice biometrics systems, we demonstrate that deepfakes do pose
a serious threat to voice authentication. Finally, we present a method to
mitigate these threats.

Executed experiments

The first experiment aimed to evaluate the technical feasibility of deepfake
creation and acquiring knowledge about the attacker. We tested two
commercial tools Overdub [8] and Resemble AI [9] and one open-source
tool Real-Time-Voice-Cloning (RTVC) [10]. The commercial tools feature
a straightforward process to synthesize speech of high quality. However,
the usability of the commercial tools falls vastly behind the open-source
one. The cost of increased usability lies within higher demands on effort
and knowledge of attackers. Despite the needed knowledge, we assess the
RTVC tool as the most powerful one, as explained later in this section.
We also examined the amount of data needed to clone an individual’s
voice; as little as five-second embedding is enough for the RTVC tool. To
achieve higher quality results, fine-tuning is needed, which needs at least
0.2 hours of transcribed speech. More data is needed if the attacker plans
to create a new model from scratch, around 20 hours of transcribed speech.
The second experiment evaluated the resilience of text-independent
verification against deepfakes. We tested two voice biometrics systems:
Microsoft Speaker Recognition API [microsoftSpeech| and Phonexia
Voice Verify demo [11] against the three previously mentioned speech
synthesis tools. We began by comparing genuine authentication attempts
with the deepfake ones. The acquired data showed that the deepfakes
created by the commercial tools get accepted as genuine speech. The
deepfake speech synthesized by the open-source tool lacked a bit behind.
To further extend the scope of the second experiment, we decided
to create a new deepfake dataset using the RTVC tool and to examine

166 Anton Firc, Kamil Malinka

Score distributions experiment: English deepfake Score distributions experiment: Czech deepfake Score distributions experiment: ASVspoof

== Impostor scores 3048 = Impostor scores 2658
Genuine scores 626 Genuine scores 580
Deepfake scores 531

= Impostor scores 2697
a0 Genuine scores 1195
Deepfake scores 791

Attempts (Genuine, Deepfake)

Deepfake scores 523

Deepfake)
Deepfake)

&
Attempts (Genuine,

Attempts (Impostor)

Attempts (Impostor)
Attempts (impostor)

Attempts (Genuine,

°

2 04 02 04
Matching scores Matching scores Matching scores

FMR and FNMR Curves FMR and FNMR Curves FMR and FNMR Curves

L0y ==+, —~ English deepfake (FMR) Impostor L0 =, == Czech deepfake (FMR) Impostor 10T N===, =~ ASVspoof (FMR) Impostor

v “\,,— English deepfake (FNMR) \ N\, Czech deepiake (FNMR) \ \—— ASVspoof (FNMR}

— English deepfake (FMR) Deepfake 08 " Caech decplake (FMR) Decpfake os] N = ASVspoof (FMR) Deepfake
, ~

Matching scores

Figure 2: Matching scores distribution graphs (top) and FMR / FNMR
graphs (bottom). The left plots represent created English deepfake dataset.
The middle plots represent created Czech deepfake dataset. The right
plots represent the ASVSpoof 2019 challenge dataset [12].

the differences between genuine and deepfake speech using MS Speaker
Recognition API. We used the RTVC tool despite achieving the worst
scores as we believe that the potential attacker would choose this tool
over the commercial ones because of its usability and the MS Speaker
Recognition API because of the definite result of the verification process
that is easy to compare. Moreover, we decided to create our dataset
because the current availability of English deepfake datasets is minimal,
and no Czech deepfake dataset exists. Moreover, this way, we can explore
all of the needed knowledge, time, and data needed to synthesize speech
intended to be used maliciously and understand the attacker’s profile
even more deeply. The dataset consists of genuine and deepfake speech
of 100 English and 60 Czech speakers selected from the Common Voice
Corpus [13]. The dataset was published' for further use.

We collected matching scores of the genuine, impostor, and deepfake
attempts using this dataset. Then we compared collected matching scores
by plotting score distribution plots and FMR, FNMR curves as shown in
Figure 2. The overlap of genuine and deepfake matching scores indicates

 https://drive. google.com/drive/u/2/folders/1v1R-TA7gjKzjYylxzRnA_
HzZEyWiLeOk

https://drive.google.com/drive/u/2/folders/1vlR-TA7gjKzjYylxzRnA_HzZEyWiLeOk
https://drive.google.com/drive/u/2/folders/1vlR-TA7gjKzjYylxzRnA_HzZEyWiLeOk

54. KONFERENCE EUROPEN.CZ 167

that there was no difference in how the voice biometrics system processed
genuine and deepfake speech. The increase in EER value shows that
presenting deepfake speech to the voice biometrics system increases the
system’s number of mistakes in terms of false accepts.

The third, final experiment compared the resilience of text-dependent
and text-independent verification to deepfakes. During the previous ex-
periments, we noticed a discrepancy between scores obtained from each
verification type. To further examine this behavior, we created a small
dataset of 5 speakers consisting of phrases for text-dependent verification
in Microsoft Speaker Recognition API [microsoftSpeech]. We collected
matching scores for genuine and deepfake attempts using text-dependent
and text-dependent verification types. As Figure 3 shows, the deepfake
matching scores differ vastly from the genuine ones. This difference almost
vanished when using text-independent verification. This implies that it is
much easier to reproduce the matching scores of text-independent verifica-
tion, which puts the text-dependent verification into a position of the more
secure one when facing deepfakes. To thoroughly verify this hypothesis,
more robust testing must be carried out.

Experiments conclusions

The executed experiments assessing the resilience of voice biometrics sys-
tems to deepfakes have suggested that deepfakes pose a serious threat
to voice authentication. Current state-of-the-art speech synthesis models
are able to synthesize speech using only a very short embedding utter-
ance, which makes almost every person a suitable target. Additionally,
considering the availability of the speech synthesis tools as an open-source
projects, the level of threat to voice biometrics might be stated as signif-
icant. Fortunately, we have discovered that text-dependent verification
shows to be more resilient to deepfakes than text-independent verification.
As text-dependent verification is a well-known method, which is surely
implemented in some systems, it might be currently used to improve the
resilience of voice biometrics systems without the need for any extensive
changes to the deployed systems. Even though this finding requires to be
examined in deeper detail on more robust experiments, current results
look promising.

168 Anton Firc, Kamil Malinka

0.9

L |

0.8

o
~
L

e
(=3
|

Matching scores

=
L
|

0.4

Text-dependent Text-dependent Text-independent Text-independent
genuine deepfake genuine deepfake

Figure 3: Comparison of scores calculated for text-dependent and text-
independent verification using the same genuine and deepfake recordings
for both verification types.

54. KONFERENCE EUROPEN.CZ 169

2.4 Spoofing people

The second important factor in the proposed call-center scenario is the
human factor. In most cases, after being authenticated by the voice
biometrics system, there is a human operator the customer has to talk
to in order to perform the desired actions. If the operator gains any
suspicion, she or he will most likely end the conversation. It means that
the deepfake recording must be able to spoof the voice biometrics system
and the operator simultaneously.

To examine whether the created deepfakes might be accepted by humans
as genuine recordings, we created a survey where the respondents are set
into a voice biometrics system. The main goal of the respondents is to
decide whether each attempt is genuine or not.

The survey consists of 10 speakers from the deepfake dataset created
during the first experiment based on their average deepfake matching scores
to range from the lowest to the highest. The second criterion balanced sex
distribution, so five female and five male speakers were selected.

For each speaker, there were two deepfake utterances and one genuine
utterance. These utterances we combined in random order into the survey.
Two versions were created, one with instructions in the Czech language
and the second in English.

Both of the surveys were released at the beginning of March 2021, and
during the course of one month, exactly 100 responses were collected. The
ratio of Czech to English responses was 1 to 2, and the female to male
ratio was exactly 1 to 1.

The responses were evaluated the same way as the performance of
biometrics systems is evaluated. Each utterance represents a verification
attempt, genuine or impostor. False accept rate and false match rate were
calculated to evaluate how precise the respondents were in distinguishing
between genuine and deepfake utterances. Table 1 shows results of both
surveys together, and also each one separately.

The results show that approximately one of the three deepfake authen-
tication attempts was successful. The quality of the genuine utterance had
a significant impact on the false accept rate.

The achieved results show that voice deepfakes have the ability to fool
humans and that there is some correlation between calculated matching
scores and the accept or reject rates.

170 Anton Firc, Kamil Malinka

Table 1: FAR and FRR calculated from the survey results.

both English Czech
FAR (%) 30.67 27.29 36.57
FRR (%) 39.06 37.04 42.57

3 Conclusions

The experiments executed on the proposed call-center model have sepa-
rately examined the included factors: voice biometrics system and human
operator.

Voice biometrics systems were easily fooled by synthetic speech. Using
only a short embedding recording, the attacker can synthesize the speech
of the selected victim and spoof the voice biometrics system. This shows
how powerful open-source tools are when used properly.

In terms of human recognition of deepfakes, we showed that people
could not spot a difference between genuine and deepfake recordings.
Considering both of the stated factors, the presented attack schema on
call-center shall be plausible. Spoofing the voice biometrics systems with
deepfakes is relatively easy, and the human factor does not increase the
difficulty.

The revealed information urges the need for the development and
deployment of methods to increase the resilience of voice biometrics systems
against deepfakes. One of the possibilities is to deploy a deepfake detection
solution. However, the effort and knowledge needed to develop a reliable
detector are pretty disproportional to the effort and knowledge needed
to perform an attack on the described model. One of the significant
problems with deepfake detection is the wide inter-class variability. Most
of the developed and presented solutions currently struggle with previously
unseen data codecs or modifications such as adding noise or changing
the bitrate. This results in misclassifying deepfakes as genuine speech.
Moreover, deploying a deepfake detection solution might also increase the
genuine rejection rate. This is an unwanted side-effect that frustrates
legitimate customers, and thus, the operator of such a biometrics system
will most likely turn the deepfake detection off.

The other option is to use natural defenses, such as text-dependent
verification. However, this approach has its own shortcomings. Imple-
menting a text-dependent verification is not always feasible, and we are

54. KONFERENCE EUROPEN.CZ 171

currently not aware of any other methods that will provide a sufficient
level of resilience against deepfakes.

Acknowledgments

This work was supported by the internal project of Brno University of
Technology (FIT-S-20-6427). Computational resources were supplied by
the project "e-Infrastruktura CZ" (e-INFRA CZ LM2018140) supported
by the Ministry of Education, Youth and Sports of the Czech Republic.

References

(1]

2]

3l

(4]

5]

(6]

7]

Jon Bateman. Deepfakes and Synthetic Media in the Financial System:
Assessing Threat Scenarios. Tech. rep. Carnegie Endowment for
International Peace, 2020, pp. i—ii. URL:
http://wuw.jstor.org/stable/resrep25783.1.

Sudipto Ghosh. Are You Confident About Distinguishing Between a
Computer-Generated Voice and Human Voice? online. 2019. URL:
https://aithority.com/ait-featured-posts/are-you-confident-
about-distinguishing-between-a-computer-generated-voice-and-
human-voice/.

Rupert Jones. Voice recognition: is it really as secure as it sounds?
online. 2018. URL:
https://www.theguardian.com/money/2018/sep/22/voice-
recognition-is-it-really-as-secure-as-it-sounds.

Dan Simmonss. BBC fools HSBC' voice recognition security system.
online. 2017. URL: https://www.bbc.com/news/technology-39965545.

Jon Petersen. Combating deepfakes with voice biometric technology.
online. 2019. URL: https://www.techradar.com/news/combating-
deepfakes-with-voice-biometric-technology.

Anton Firc. ,Applicability of Deepfakes in the Field of Cyber Security*.
Supervisor Mgr. Kamil Malinka, Ph.D. MA thesis. Brno University of
Technology, Faculty of Information Technology, 2021.

Anton Firc and Kamil Malinka. ,, The dawn of a text-dependent society:
deepfakes as a threat to speech verification systems®. In: Brno, CZ:
Association for Computing Machinery, 2022. por:
10.1145/3477314.3507013. URL:
https://www.fit.vut.cz/research/publication/12595.

http://www.jstor.org/stable/resrep25783.1
https://aithority.com/ait-featured-posts/are-you-confident-about-distinguishing-between-a-computer-generated-voice-and-human-voice/
https://aithority.com/ait-featured-posts/are-you-confident-about-distinguishing-between-a-computer-generated-voice-and-human-voice/
https://aithority.com/ait-featured-posts/are-you-confident-about-distinguishing-between-a-computer-generated-voice-and-human-voice/
https://www.theguardian.com/money/2018/sep/22/voice-recognition-is-it-really-as-secure-as-it-sounds
https://www.theguardian.com/money/2018/sep/22/voice-recognition-is-it-really-as-secure-as-it-sounds
https://www.bbc.com/news/technology-39965545
https://www.techradar.com/news/combating-deepfakes-with-voice-biometric-technology
https://www.techradar.com/news/combating-deepfakes-with-voice-biometric-technology
https://doi.org/10.1145/3477314.3507013
https://www.fit.vut.cz/research/publication/12595

172
18]
Bl

[10]

(11]

(12]

[13]

Anton Firc, Kamil Malinka

Descript. Overdub. online. 2021. URL:
https://www.descript.com/overdub.

Resmble Al. Resemble Al webpage. online. 2020. URL:
https://www.resemble.ai.

Jemine Corentin. ,Real-time Voice Cloning“. Master thesis. Liége,
Belgique: Université de Liége, Liége, Belgique, 2019. URL:
https://matheo.uliege.be/handle/2268.2/680171locale=en.

Phonexia. Phonezia Voice Verify.
https://www.phonexia.com/en/product/voice-verify/. 2021.

Junichi Yamagishi et al. ASVspoof 2019: The 3rd Automatic Speaker
Verification Spoofing and Countermeasures Challenge database. 2019.
URL: https://doi.org/10.7488/ds/2555.

Rosana Ardila et al. ,,Common Voice: A Massively-Multilingual Speech
Corpus“. English. In: Proceedings of the 12th Language Resources and
Evaluation Conference. Marseille, France: European Language Resources
Association, May 2020, pp. 4218-4222. 1SBN: 979-10-95546-34-4. URL:
https://www.aclweb.org/anthology/2020.1rec-1.520.

https://www.descript.com/overdub
https://www.resemble.ai
https://matheo.uliege.be/handle/2268.2/6801?locale=en
https://www.phonexia.com/en/product/voice-verify/
https://doi.org/10.7488/ds/2555
https://www.aclweb.org/anthology/2020.lrec-1.520

SIMULATIONS OF DAG-BASED BLOCKCHAIN
PROTOCOLS AND ATTACKS ON THE PHANTOM
PrROTOCOL VIA TRANSACTION SELECTION
STRATEGIES

Martin Peresini, Ivan Homoliak, Kamil Malinka,
Federico Matteo Benci¢, Tomas Hladky

1 Introduction

Blockchain technology is a relatively new concept that only came to the
general public’s attention in 2009 when Satoshi Nakamoto’s original Bitcoin
white paper was published [1]. As a result, the value of cryptocurrencies has
soared as companies and individuals have begun to realize their benefits.
Public consciousness is focused mainly on Bitcoin, closely followed by
Ethereum, but other blockchain protocols are also gaining considerable
attention. The use cases for blockchain technology are not only the
exclusive domain of cryptocurrencies, but the application can also be found
in other sectors such as healthcare, food-chain supply, e-voting systems,
data storage, and others [2]. With the promise of blockchain properties
and their popularity, blockchain technology’s security and privacy benefits
could seem that blockchains are already settled, and there are no open
questions. However, security and performance issues are still a significant
concern for this technology. To improve the properties of blockchain
protocols, the concept of Directed Acyclic Graph (DAG)-based protocols
was introduced [3, 4].

The focus of this work is to explore the issues of DAG-oriented consensus
protocols. No one has yet analyzed the performance and robustness of
DAGe-oriented approaches in an empirical study under the assumption
of real-world conditions and adversarial settings via different incentive
schemes that differ from protocol design.

174 M. Peresini, I. Homoliak, K. Malinka, F. M. Ben¢ié¢, T. Hladky

1.1 Motivation

We investigate existing blockchain designs with DAG structure that propose
solutions to blockchain throughput problems, particularly the PHANTOM
protocol and its optimization GHOSTDAG. These protocols generalize
the PoW rule of longest/strongest chain and utilize stale blocks (resulting
from forks) in the DAG structure with a proposed random transaction
selection strategy, resulting in increased transaction throughput.

However, this assumption of random transaction selection is not ade-
quately analyzed. As a result, we propose an attack in which actors who
do not follow the protocol design and select transactions rationally (based
on the highest fee) will have a significant profit advantage over honest
protocol users. To properly evaluate the proposed attack, we developed a
custom simulator! that extends the open-source simulation tool to support
multiple chains and enables us to investigate the behavior of such edge
cases.

2 Blockchain throughput limitations

Security

Figure 1: Blockchain trilemma concept.

Blockchains suffer from a bottleneck in processing throughput. Nakamoto’s
consensus (Bitcoin) proposal [1] limits the maximum block size, which
implies a limited number of transactions. Bitcoin’s throughput is around
3—8 transactions per second. Ethereum can process 15—30 transactions per
second, compared to the centralized financial system Visa, which already

'https://github.com/Tem12/DAG-simulator/

https://github.com/Tem12/DAG-simulator/

54. KONFERENCE EUROPEN.CZ 175

had a maximum speed of ~ 10000 — 20000 transactions per second [5] is
orders of magnitude different. One might think that a naive approach
could solve this problem:

e Increase block size — and thus increase the number of transactions
in one block. However, this leads to centralization because larger
blocks take longer to propagate to all other miners (nodes) in the
network [6]. Smaller miners will be at a disadvantage because by
the time they receive the latest mined block, the larger miners (or
pools) that just sent that block can immediately start mining the
next block.

25
20

B

10 \

block duplicaty rate (%)

\.\ Bitcoin
o
—
5 -\.\
—
100 200 300 400 500 600
A (seconds)

Figure 2: The relationship between the decreasing block creation time ()
and the increased occurrence of orphan blocks in Bitcoin.

e Decrease block creation time — this will result in a reduction in
mining difficulty. The bitcoin block creation time (parameter \) is
set to an average of 10 minutes [1]. Reducing this value will increase
the orphaned block rate? (see Figure 2), resulting in wasted energy
and resources. The occurrence and integration of orphaned blocks is
resolved by consensus itself.

These naive improvements resolve the throughput problem and only
worsen the balance between the so-called security-performance trade-off. If

’https://www.investopedia.com/terms/o/orphan-block- cryptocurrency.asp

https://www.investopedia.com/terms/o/orphan-block-cryptocurrency.asp

176 M. Peresini, I. Homoliak, K. Malinka, F. M. Ben¢ié¢, T. Hladky

we could somehow utilize stale blocks (forks), we can increase throughput
— DAG-based protocols.

3 DAG-based protocols

Blockchains inherently suffer from the processing throughput bottleneck, as
consensus must be reached for each block within the chain. One approach
to solving this problem is to increase the rate at which blocks are created.
However, this approach has its drawbacks (section 2, Figure 2).

3.1 Forks

If blocks are not propagated through the network before a new block (or
blocks) is created, a soft fork can occur, where two blocks reference the
same parent block. A soft fork resolves itself, and thus only one block is
eventually accepted as valid, Figure 3. All other blocks and transactions
they contain are discarded (i.e., orphaned). As a result, consensus nodes
that created orphaned blocks waste their resources and do not get rewarded
for their efforts. This is problematic because it may discourage consensus
nodes from participating in the consensus protocol.

=

Figure 3: Soft fork.

Nakamoto (PoW) consensus uses a single chain to link the blocks. The
order of blocks® in Bitcoin has initially been determined using the longest
chain rule (see Figure 4). However, this rule was later replaced in favor
of the strongest chain rule (see Figure 5), which takes into account the
accumulated difficulty of the PoW puzzle.

As a response to the above issue, several proposals [3, 4] have substi-
tuted a single chaining data structure for Directed Acyclic Graph (DAG)

3And consequently transactions.

54. KONFERENCE EUROPEN.CZ 177

G- e e[=
Bsp |<—| Bsg H Bep |

Figure 4: The longest-chain rule with orphaned blocks (purple) in PoW
consensus.

Bga |<—I Boa |<—I B1o |

B7g B B |
‘:_n=0x031..| | 8'3| | o

B7a
Hp=0x0079.

Bg

Bsg
Hp=0x00B..

Figure 5: The strongest-chain rule with the main chain in green and
orphaned blocks in purple. The hash of the block is denoted as Hp.

Figure 6: A DAG structure used in blockchain.

178 M. Peresini, I. Homoliak, K. Malinka, F. M. Ben¢ié¢, T. Hladky

structure, as displayed in Figure 6. Such a structure can maintain multi-
ple interconnected chains and thus increase processing throughput. The
assumption of some DAG-oriented solutions is to abandon transaction
selection based on the highest fee since this approach increases the probabil-
ity that the same transaction is included in more than one block (hereafter
transaction collision). Instead, these solutions use a random selection
strategy to avoid transaction collisions.

3.2 PHANTOM

step 3

step4 step5

Figure 7: An example of a blockDAG G and the operation of GHOSTDAG to
construct its blue set BLU E(G) set, under the parameter k = 3. The circle near each
block X represents its score, namely, the number of blue blocks in the DAG past(X).
The algorithm selects the chain greedily, starting from the highest-scoring tip M, then
selecting its predecessor K (the highest scoring tip in past(M)), then H, D (breaking
the C, D, E tie arbitrarily), and finally Genesis. A hypothetical “virtual” block V is
introduced to this chain — a block whose past equals the entire current DAG. Blocks in
the chain (Genesis, D, H, K, M, V) are marked with a light-blue shade. We construct
the DAG’s set of blue blocks using this chain, BLUEy(G). The set is constructed
recursively and using the blue anticone principle [3].

There are several categories and designs of DAG protocols. More than
thirty DAG-oriented blockchain systems have been classified based on
their characteristics and principles. We skip the DAG protocols and their
theoretical designs, whose complexity of recursively establishing consensus
on the blocks it contains is impractical and challenging [3], we instead focus

54. KONFERENCE EUROPEN.CZ 179

on PHANTOM and describe it. Moreover, since the use of PHANTOM
is considered impractical in terms of efficiency [3], because it requires
solving the NP-hard 4, the authors of PHANTOM have developed a greedy
algorithm called GHOSTDAG (Figure 7, which is more convenient for
implementation). We emphasize that the results of our research apply to
GHOSTDAG and PHANTOM. In the context of this work, the maximum
k-cluster SubDAG problem and block ordering are not crucial, so they
have been abstracted in our simulations for simplicity.

4 Blockchain simulators

When proposing new changes or modifications to existing blockchains
protocols, they need to be continuously tested and verified. A challenging
point during this process is that some of their properties only become
apparent with a large number of nodes. Since formal modeling cannot
cover all properties, another option is to deploy actual nodes in an entire
network, which can be a problem with a large number of nodes and require
a minimal implementation of the blockchain; thus, it is an enormous
computational cost. For this reason, in many cases, simulation remains
the only option to verify their properties, as it simulates the behavior
of an entire network. However, the design of such a simulator is complex,
which is why most simulators focus on the specific aspects they implement,
and only abstract the rest.

There are a lot of different blockchain simulators (Table 1): BTCsim [7],
SimBlock [8], BlockSim [9], Simbit [10] and Bitcoin Mining Simulator [11]
but none of them were initially intended for DAGs and did not support
them.

Simulator PowW DES NEZ;ZEk ’Il‘gg;_]?[{(;(Csk Compiled
BTCsim [7] v v v v
Simbit [10] v v v v
BlockSim [9] v v v v v
SimBlock [8] v v v v v
Bitcoin MBSim [11] v v v v v v

Table 1: Comparison of different blockchain simulators.

4Maximum k-cluster SubDAG problem

180 M. Peresini, I. Homoliak, K. Malinka, F. M. Ben¢ié¢, T. Hladky

Instead of implementing the simulation model from scratch, we de-
cided to create an extension to an existing simulator (the Bitcoin Mining
Simulator — Bitcoin MBSim [11]) that allows us to perform various ex-
periments aimed at investigating the behavior of the PHANTOM protocol
under attacks related to the potential identified problems. We have several
requirements from the simulator that need to be fulfilled:

e Discrete Event Simulation (DES)
e Custom network topology

e Network layer with block propagation delay (custom latency between
peers)

e Data layer involving transactions in blocks
e Mempool data structure

e Simulator implemented in a compiled language — optimization, for
extensive experiments

Our extended simulator is a classic event-driven simulator. The created
model tries to reflect as many of the necessary details as possible while
abstracting away from unnecessary aspects of the protocol itself. The
source code for the simulator is available at https://github.com/Tem12/
DAG-simulator/.

The primary purpose of the simulator is to verify the profit of miners and
the collision rate of transactions. Therefore, the simulator must implement
a network and data layer. To this end, the simulator does not reflect
actual blockchain implementations, which means that we do not simulate
actual attacks on the network and assume that all simulated actors follow
the consensus algorithm. Thus, we can omit the consensus layer and its
features (e.g., Merkle tree hash computation, SHA256 hashing algorithm,
block and transaction verification). We expect the simulation to spend
most of the computation time on basic mempool (buffer of unprocessed
transactions) operations such as sorting, inserting, or removing. For this
reason, a mempool implementation is essential, and all mempool work must
be optimized for better performance — hence the simulator is implemented
in a compiled language. For a mempool, we used a specially tailored hash

https://github.com/Tem12/DAG-simulator/
https://github.com/Tem12/DAG-simulator/

54. KONFERENCE EUROPEN.CZ 181

table. This optimization enables effective management of the mempool in
the case of any transaction selection strategy5

Another part is the extension of the original simulator to support the
simulation of (abstracted) multiple chains of DAG-based blockchains. At
the same time, monitoring transaction duplicity, throughput, and the
relative earned profit with respect to the used mining power (hash-rate).
In addition, we have improved and added more simulation complexity to
simulate each block, including the corresponding transactions (as opposed
to simulating only the number of transactions in a block), added a custom
process that creates transactions and broadcasts them to the network
of miners. Most importantly, we implemented two different transaction
selection strategies — a rational and a random strategy.

5 Evaluation

There are a lot of essential parameters and adjustments that we had to
go through to create our best guideline on how to simulate blockchains
properly. Every parameter in the system is sensitive and can drastically
change the output. In addition to the simulator itself, we created au-
tomated scripts to create the correct simulation configuration (different
network topologies, network delay distribution, etc.) and scripts to run
the simulator on a multi-core system and implemented our use case for
data collection and post-processing at a later stage, meaning the simulator
could collect the data and the data could be processed independently
at a later stage. For our simulations, we used the following parameter
configuration:

5.1 Experiments

GoOAL of the experiments is to examine the relative earned profits of mali-
cious miners who follow a rational transaction selection strategy compared
to honest miners who follow a random strategy.

RESULTS We implement a Bitcoin-like network topology of approximately
8000 nodes with realistic block propagation latency. We kept the fre-
quency of block creation constant within this experiment (A = 20 sec),

5Note: For example, a rational transaction strategy requires a mempool with
transactions ordered by fees, while a random transaction strategy requires the hash-map
data structure. Therefore, they are hard to utilize at the same time.

182 M. Peresini, I. Homoliak, K. Malinka, F. M. Ben¢ié¢, T. Hladky
Parameter Value
block creation rate (A) 20

network propagation delay (1)
of total blocks

5 seconds or realistic delay distr.
20000

of miners 7592
network topology realistic Bitcoin-like
of transactions in block 100

maximum size of mempool
distribution of transaction fees
mining strategies

10144 transactions
exponential (Afee = 150)
rational or random

mining power of each miner 0 to 100%

Table 2: Used parameters for the simulations.

experimented with the adversarial mining power of malicious miners in
the network and monitored the relative profit for each setting. Part of
the results are shown in Figure 8. They show that with a single malicious
miner, the average profit of honest miners is roughly halved compared to
the average profit of the malicious miners. In addition, our experiments
showed that the profit advantage of malicious miners decreases as their
number increases. This observation can be considered beneficial to the
protocol because it discourages more miners from using a rational transac-
tion selection strategy. On the other hand, we also observe that malicious
miners are instead incentivized to form a malicious mining pool.

6 Conclusion

In the paper, we provide the reader with an introduction and analysis of
a possible solution to blockchain throughput issues in the form of DAG-
based blockchain protocols. On the other hand, we found that one such
protocol, PHANTOM is susceptible to our presented attack on an incentive
scheme utilizing a different transaction selection strategy. We created
the open-source simulator and performed experiments that verify that
malicious actors have relative profit advantages in a Bitcoin-like network
and inherently decrease protocol throughput. The reader should be familiar
with the problem of DAG-based protocols and simulation pitfalls to at
least some extent. More details about DAG-oriented protocols, blockchain
simulations and described attacks can be found in article [12].

54. KONFERENCE EUROPEN.CZ 183

—=- Fair baseline
—— Malicious miner

N w N S o ~
o o o o o o

Malicious node absolute profit [%]

=
o

o

0 5 10 15 20 25 30 35 40
Malicious node relative mining power [%]

Figure 8: Profit relative to mining power of a malicious miner in Bitcoin-
like network topology.

References

(1
2]

3l

(4]

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.
URL: http://www.bitcoin.org/bitcoin.pdf.

Thomas McGhin et al. ,Blockchain in healthcare applications: Research
challenges and opportunities“. In: Journal of Network and Computer
Applications 135 (2019), pp. 62-75. 1SsN: 1084-8045. poI:
https://doi.org/10.1016/j.jnca.2019.02.027. URL: http://www.
sciencedirect.com/science/article/pii/S1084804519300864.

Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. ,PHANTOM
GHOSTDAG: A Scalable Generalization of Nakamoto Consensus:
September 2, 2021“. In: Proceedings of the 3rd ACM Conference on
Advances in Financial Technologies. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 57-70. 1SBN: 9781450390828. URL:
https://doi.org/10.1145/3479722.3480990.

Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. , Inclusive
block chain protocols®. In: Financial Crypto. 2015.

http://www.bitcoin.org/bitcoin.pdf
https://doi.org/https://doi.org/10.1016/j.jnca.2019.02.027
http://www.sciencedirect.com/science/article/pii/S1084804519300864
http://www.sciencedirect.com/science/article/pii/S1084804519300864
https://doi.org/10.1145/3479722.3480990

184

]

(6]

7]

18]

9

[10]

[11]

(12]

M. Peresini, I. Homoliak, K. Malinka, F. M. Ben¢ié¢, T. Hladky

Shihab Hazari and Qusay Mahmoud. ,,Improving Transaction Speed and
Scalability of Blockchain Systems via Parallel Proof of Work®. In: Future
Internet 12 (July 2020), p. 125. por: 10.3390/£112080125.

J. Gobel and A.E. Krzesinski. , Increased block size and Bitcoin
blockchain dynamics®. In: 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC). 2017, pp. 1-6. DOL:
10.1109/ATNAC.2017.8215367.

Rafael Brune. Bitcoin Network Simulator,
https: // github. com/ rbrune/btcsim. online. Nov. 2013. URL:
https://github.com/rbrune/btcsim.

Shu Takayama et al. SimBlock,
https: // github. com/dsg-titech/simblock. online. June 2019. URL:
https://github.com/dsg-titech/simblock.

Carlos Faria. BlockSim: Blockchain Simulator,
https: // github. com/ carlosfaria94/blocksim. online. Mar. 2018.
URL: https://github.com/carlosfaria94/blocksim.

S. Bowe. Javascript P2P Network Simulator,
https: // githudb. com/ ebfull/simbit. online. Mar. 2014. URL:
https://github.com/ebfull/simbit.

Gavin Andresen. Mining / block propagation simulator,

https: // github. com/ gavinandresen/bitcoin_ miningsim. online.
May 2015. URL:
https://github.com/gavinandresen/bitcoin_miningsim.

Martin Peresini et al. DAG-Oriented Protocols PHANTOM and
GHOSTDAG under Incentive Attack via Transaction Selection Strategy.
2021. por: 10.48550/ARXIV.2109.01102. URL:
https://arxiv.org/abs/2109.01102.

https://doi.org/10.3390/fi12080125
https://doi.org/10.1109/ATNAC.2017.8215367
https://github.com/rbrune/btcsim
https://github.com/rbrune/btcsim
https://github.com/dsg-titech/simblock
https://github.com/dsg-titech/simblock
https://github.com/carlosfaria94/blocksim
https://github.com/carlosfaria94/blocksim
https://github.com/ebfull/simbit
https://github.com/ebfull/simbit
https://github.com/gavinandresen/bitcoin_miningsim
https://github.com/gavinandresen/bitcoin_miningsim
https://doi.org/10.48550/ARXIV.2109.01102
https://arxiv.org/abs/2109.01102

THE SECURITY REFERENCE ARCHITECTURE FOR
BLOCKCHAINS: TOWARDS A STANDARDIZED
MODEL FOR STUDYING VULNERABILITIES,
THREATS, AND DEFENSES

Ivan Homoliak

Abstract

Due to their specific features, blockchains have become popular in recent years.
Blockchains are layered systems where security is a critical factor for their
success. The main focus of this work is to systematize knowledge about security
and privacy issues of blockchains. To this end, we propose a security reference
architecture based on models that demonstrate the stacked hierarchy of various
threats as well as threat-risk assessment using ISO/IEC 15408. In contrast to the
previous surveys [1, 2, 3], we focus on the categorization of security vulnerabilities
based on their origins and using the proposed architecture we present existing
prevention and mitigation techniques. The scope of our work mainly covers
aspects related to the nature of blockchains, while we mention operational security
issues and countermeasures only tangentially.

1 Blockchains at a Glance

The blockchain is a data structure representing an append-only distributed
ledger consisting of entries (transactions) aggregated within ordered blocks.
The order of the blocks is agreed by untrusting participants running a
consensus protocol. A transaction is an elementary data entry that may
contain arbitrary data, e.g., an order to transfer native cryptocurrency
(crypto-tokens), a piece of application code (i.e., smart contract), the
execution orders of such application code, etc. Transactions sent to a
blockchain are validated by all nodes that maintain a replicated state of
the blockchain.

186 Ivan Homoliak

Involved Parties Blockchains usually involve the following parties.
(1) Consensus nodes actively participate in the underlying consensus
protocol. These nodes can read the blockchain and write to it by appending
new transactions (which they also disseminate). Besides, they can validate
the blockchain and thus check whether writes of other consensus nodes
are correct and respect a specified logic. Consensus nodes can prevent
malicious behavior (e.g., by not appending invalid transactions, or not
following an incorrect blockchain view). In the context of Proof-of-Resource
protocols (see subsection 4.2), these nodes are often referred to as miners.
(2) Validating nodes read the entire blockchain, validate it, and disseminate
transactions. Unlike consensus nodes, validating nodes cannot write to
the blockchain. Hence, they cannot prevent malicious behavior. However,
since they possess the entire blockchain, they can detect malicious behavior.
(8) Lightweight nodes (i.e., clients) benefit from most of the blockchain
functionalities, but they are equipped only with limited information about
the blockchain. These nodes read only a fragment of the blockchain
(usually block headers) and validate only a small number of transactions
that concern them, while they rely on consensus and validating nodes for
ensuring correctness of the blockchain. They can detect only a limited set
of attacks.

Features of Blockchains Blockchains were initially proposed as open
cryptocurrencies, but due to their features, they became appealing for
other applications as well. Blockchains achieve decentralization via a dis-
tributed consensus protocol, which provides resilience to failures. Usually,
participants are equal and no single entity pose an authority. Another
important result of decentralization is censorship resistance. Blockchains
are immutable, requiring a significant quorum of colluding nodes to change
its entries retrospectively. Usually, immutability is achieved thanks to
a cryptographic one-way function that creates integrity preserving links
between blocks. Although blockchains are highly redundant in a storage of
the data, the main advantage of such redundancy is high availability. This
feature is of special interest to applications that cannot tolerate outages.
Blockchain transactions, as well as actions of protocol participants, are
usually transparent to other participants and in most cases even to the
public. This can be a benefit for multiple applications, but it can also
be seen as a disadvantage from the anonymity and privacy perspective.
Beside common features, some blockchains may focus on additional fea-

54. KONFERENCE EUROPEN.CZ 187

tures, such as energy efficiency [4, 5, 6], scalability [7], throughput [8, 9,
10], privacy [11], etc.

Types of Blockchains Based on how a new node enters a consensus
protocol, we distinguish the following blockchain types. (1) Permissionless
blockchains allow anyone to join the consensus protocol without permission.
Such participation can be anonymous, and these protocols are designed to
run over the Internet. To prevent Sybil attacks [12], these schemes usually
require consensus nodes to establish their identities by running a Proof-
of-Resource scheme, while the consensus power of a node is proportional
to its resources invested into running the protocol. (2) Permissioned
blockchains require a consensus node to obtain permission (and identity)
to join the consensus protocol. The permission is given by a centralized
or federated authority(ies), while nodes usually have equal consensus
power (i.e., one vote per node). These schemes can be public if they are
accessible over the Internet or private when they are deployed over a
restricted network. (3) Semi-Permissionless blockchains require each new-
coming consensus node to obtain a permission (i.e., cryptocurrency “stake”);
however, such permission can be given by any stakeholder (i.e., consensus
node). These blockchains are similar to permissionless blockchains, except
a consensus is based on a stake rather than on resources spent. The
node’s consensus power is proportional to the stake it has. Similar to
permissionless blockchains, these systems are usually intended to be run
over the Internet. Novel aspects of (semi-)permissionless blockchains are
incentives and network effects that are designed to increase the protocol’s
security and adoption.

2 Security Reference Architecture

Stacked Model To classify security aspects related to blockchains, we
introduce a simplified stacked model [2] consisting of four layers (see Fig-
ure 1). In contrast to previous work [2], we keep only such granularity level
that enables us to isolate various nature of security threats in blockchains.

(1) The network layer (see section 3) consists of the data representation
and network services planes. The data representation plane deals with
storing and encoding of data, while the network service plane contains
discovery and communication with protocol peers, addressing, routing, and
naming services. (2) The consensus layer (see section 4) deals with ordering

188 Ivan Homoliak

H = H
=R (-

i 88 Crypto-Tokens Decentralized
g ‘%’:3 & Wallets izl File Systems |
E‘.‘.i‘.‘.‘.‘.'.‘.‘.‘.‘.‘.'.‘.‘.‘.‘.'.‘.‘.'.‘.‘.'.‘.‘.'.‘.‘.‘.‘.'.‘.‘.‘.‘.‘.'.‘.‘.‘.'.‘.‘.‘.'.‘.‘.'.‘.‘.‘.'.‘.‘.‘.‘.‘.'.‘.:::::::::::::::::::::::::::::::'.::::::::::::::::::::::::::::::::‘:
B o

i SLEG . U Smart Contracts J
P 28GR Transactions

H %(/) g |

2 AN

Tolerant Pro-
_ tocols (BFT)

(] - §
Byzantine Fault Proof-of-Resource || Proof-of-Stake
Protocols (PoS) |:

Protocols (PoR)

Consensus
Layer

P Peer Discovery
i g & Management “
g% Data § (
. 5 |Representation| | £ | DNS
a P || sep |

Figure 1: Stacked model of reference architecture.

of transactions and we divide it according to a type of the protocol used to
Byzantine Fault Tolerant (e.g., [13, 14, 15]), Proof-of-Resource (e.g., [7, 16,
17, 18, 19]), and Proof-of-Stake (e.g., [5, 6]) protocols. (3) The replicated
state machine (RSM) layer (see section 5) deals with the interpretation of
transactions, according to which, the state of the blockchain is updated.
Smart contracts involve two special types of transactions, which represent a
programming code itself and invocations of this code. (4) In the application
layer (see section 6) we present the most common end-user functionalities
such as crypto-tokens with wallets, oracles/data feeds, and decentralized file
systems. Throughout the paper, we summarize components of particular
layers with their respective security threats and protection techniques.

Threat-Risk Assessment Model To better capture security-related
aspects of blockchain systems, we introduce a threat-risk model based on
the template of ISO/IEC 15408 [20]. The model includes the following
components and actors (see Figure 2). Owners are blockchain users who

54. KONFERENCE EUROPEN.CZ 189

run any node type. Owners posses crypto-tokens and/or use blockchain-
based applications or services. Assets consist of monetary value (i.e.,
crypto-tokens), blockchain functionalities, as well as services built on top
of them (e.g., exchanges, secure logging, supply chains). Threat agents
are malicious users whose intention is to steal assets, break functionalities,
or disrupt services. Threats arise from vulnerabilities at the network, in
smart contracts, from consensus protocol deviations, violations of protocol
assumptions, or application-specific dependencies. Threats facilitate vari-
ous attacks on assets and services. Countermeasures are provided by the
security, safety, incentives, and reputation techniques that protect owners
from threats. Risks caused by threats and their agents may lead to losses
of monetary assets or service malfunctions and disruptions.

The owners wish to minimize the risk caused by threats that arise from
threat agents. With the stacked model, different threat agents appear
at each layer. At the network layer, there are service providers includ-
ing parties managing IP addresses and DNS names. The threats at this
layer come from man-in-the-middle (MITM) attacks, network partition-
ing, de-anonymization, and availability attacks. Countermeasures contain
protection of availability, naming, routing, anonymity, and data. At the
consensus layer, nodes may be malicious and wish to alter the outcome of
the consensus protocol by deviating from it. The countermeasures include
economic incentives, strong consistency, and decentralization. At the RSM
layer, the threat agents may stand for developers who (un)intentionally
introduce semantic bugs in smart contracts (intentional bugs represent
backdoors). Mitigating countermeasures are safe languages, static/dy-
namic verification, and audits. Other threats are related to privacy of data
and identity of users with mitigation techniques using mixers, cryptogra-
phy constructs (e.g., non-interactive zero-knowledge proofs (NIZKs), ring
signatures). At the application layer, threat agents are unspecified, since
any user on the network who uses a blockchain application may pose a
threat. The threats on this layer arise from false data feeds and examples
of mitigation techniques are authentication or reputation systems.

3 Network Layer

3.1 Private Networks

A private network ensures low latency, a centralized administration, privacy,
and meeting regulatory obligations (e.g., HIPAA). The organization owning

190 Ivan Homoliak

Layer: (Owners) Layer: (Countermeasures
Application Users, providers of B Multi-factor
applications and services authentication, HW
Consensus Consensus nodes wallets, redundancy,
\ | Application | distribution of control,
reputation approaches,
Layer: Threats applicatipn-level privacy
False data preserving constructs
feeds, censorship, front Safe languages,
running attacks, static/dynamic analysis,
disruption of availability formal verification, audits,
Application | and privacy, misbehaving best practices, mixers,
manufacturer of TEE or RSM NIZKSs, trusted HW, ring
token issuer, permanent signatures, blinding
HW fault of TEE signatures, homomorphic
Privacy threats revealing encryption, secure MPC
RSM data and user identities, Economic incentives,
exploiting smart contract- Consensus strong consistency, de-
specific bugs centralization, fast finality
Consensus Protocol deviations, Redundancy, protection
violation of assumptions Network [of naming, availability,
MITM attacks, availability routing, a';g:'aym“y’ and
Network attacks, network . J
partitioning, de- wish to minimize ¢ to reduce
anonymization ~
~ — <L > Risk
f give rise to increase |
Layer: 6 Threat Agents) Loss of crypto-tokens or
assets they represent,
Arbitrary internal or loss of privacy,
external adversary loss of reputation,
(e.g., users, service broken functionalities,
Application providers, malware), disrupted services,
designers of applications \)
and services, ¢ o
manufacturers of TEE, p ~
authorities for arbitration, L to N Assets
token issuers >
Smart contract Crypto-tokens,
RSM developers, users, privacy of users,
external adversaries with wish to abuse _ | privacy of data,
lightweight node or damage ~ authenticity of users,
availability of applications
Consensus Consensus nodes and services,
reputation of service
Network Providers of network providers
services
g J - J

Figure 2: Threat-risk assessment model of reference architecture.

54. KONFERENCE EUROPEN.CZ 191

the network provides access to local participants as well as to external
ones; hence systems deploying private networks belong to the group of
permissioned private blockchains. The inherent feature of private networks
is that authentication and access control can be provided at the network
layer.

Pros

Access control is achieved by centralized authentication of users and assign-
ing them roles. A private network has full control over routing paths and
physical resources used, which enables regulation of the network topology
and transmission medium best suited for requirements. Data privacy is
ensured by permissioned settings. User identity is revealed only within a
private group of nodes; they are immune to external attacks in contrast to
public networks. Fine-grained authorization controls are applied by the
operator of the network to implement the security principle of minimal
exposure and thus mitigate insider threat attacks [21]. Resource availabil-
ity is easier to manage, as all network participants and the deployment
scenario are known ahead of time.

Cons

Virtual Private Network (VPN) connectivity is required to communicate
between private networks spread over different geographical locations.
While VPNs are in general secure, they inherit the disadvantages of
running service over the Internet. Applicability of private networks is
suitable only for permissioned and private blockchains.

Security Threats and Countermeasures

Insiders may pose a serious threat to security [22]. A compromised node
may already have administrative privileges or obtain them by exploiting
security vulnerabilities. Countermeasures include regular software updates,
user monitoring (e.g., SIEM), prevention techniques that minimize trust
and maximize trustworthiness, as well as respecting best practices [21].

3.2 Public Networks / the Internet

Public networks provide high decentralization, openness, and low en-
try barrier, while network latency, privacy, and network control are put

192 Ivan Homoliak

aside. These networks are naturally required by all public (permissionless)
blockchain systems.

Pros

High availability is attractive to multi-homed nodes since they have alter-
nate routes to send/receive messages. Multi-homed nodes may find useful
to disseminate blocks across multiple channels, thereby increasing a chance
of blocks being appended to the blockchain. Decentralization is achieved
through geographical dispersion of nodes. Public peer-to-peer (p2p) net-
works are harder to shut down [23]. Openness and low entry barrier on the
Internet are achieved through wide adoption, technology interoperability
(e.g., using TCP/IP), economic (e.g., low cost of broadband connection)
and societal (e.g., resistance to regulations) factors.

Cons

Single-point-of-failure — DNS with its hierarchy, IP addresses, and ASes
are managed by centralized parties like IANA of ICANN. Ezternal ad-
versaries pose a threat to public networks. These adversaries can be
classified based on their capabilities to which the blockchain network may
be exposed [24]: (1) resources under attacker control (e.g., botnets, DNS
and BGP servers), (2) identities are stolen or masqueraded (e.g., IP ad-
dresses participating in an eclipse attack or route manipulation), (3) MITM
attacker (i.e., eavesdropping and spoofing), (4) common vulnerabilities
leading to exploits, e.g., observed in DNS BIND [25], (5) revealing secrets
(e.g., de-anonymizing peers). Efficiency — although an average Internet
bandwidth has improved in recent years, a distribution of powerful infras-
tructure is not uniform, which results in a different latency among peers,
and the overall latency of the network is increased — this, in turn, may
result to loss of created blocks and thus wasting of consensus power.

Security Threats and Countermeasures

DNS attacks usually arise from cache poisoning that mainly affects nodes
employing DNS bootstrapping to retrieve online peers but also users
of online blockchain explorers. One countermeasure is a security
extension of DNS, called DNSSEC, which provides authentication
and data integrity. In addition, name resolution can also be made
using alternate DNS servers.

54. KONFERENCE EUROPEN.CZ 193

Routing attacks are traffic route diversions, hijacking, or DoS attacks.

Beside simple data eavesdropping or modification, these attacks may
lead to network partitioning, which in turn raises the risks of 51%
attacks or selfish mining attacks (see section 4). Countermeasures
suggest nodes to be multi-homed (or using VPN) for route diversity,
choosing extra peers whose connections do not pass through the
same ASes, preference of peers hosted on the same AS within the
same /24 prefix (to reduce risk of partitions), and fetching the same
block from multiple peers [26]. Another mitigation is SABRE [27], a
secure relay network that runs alongside with the Bitcoin network.
The BGPsec [28] is an extension for BGP used between neighboring
ASes, and it provides assurance of route origin and propagation.

Eclipse attacks hijack all connections of a node to the blockchain net-

DoS

DoS

work. Hence, all traffic received by the node is under the full control
of the attacker. Eclipse attacks arise from threats on DNS and rout-
ing in the network as well as they may be a result of vulnerabilities
in p2p protocols [29, 30, 31]). Eclipse attack increase chances of
selfish mining and double spending attacks (see section 4) — the
eclipsed victims may vote for an attacker’s chain. Countermeasures:
Improving randomness in choosing peers was proposed in work [29]
by several rules that manage the peer table. Another mitigation
strategy against eclipse attacks is to use redundant network links or
out-of-band connections to verify transactions (e.g., by a blockchain
explorer). Also, note that countermeasures for DNS and routing
attacks are applicable here as well.

Attacks on connectivity may result in a loss of consensus power,
thus preventing consensus nodes from being rewarded. For validating
nodes, this attack leads to disruption of some blockchain dependent
services. Countermeasures: One mitigation is to peer only with
white-listed nodes. Methods to prevent volumetric DDoS include on-
premise filtering (i.e., with an extra network device), cloud filtering
(i.e., redirection of traffic through a cloud when DDoS is detected),
or hybrid filtering [32] (i.e., combinations of the previous two).
attacks on local resources, such as memory and storage, may
reduce the peering and consensus capabilities of nodes [33]. An
example is flooding the network with low fee transactions (a.k.a.,
penny-flooding), which may cause memory pool depletion, resulting
in a system crash. Possible mitigation is raising the minimum
transaction fee and rate-limit the number of transactions.

194 Ivan Homoliak

4 Consensus Layer

4.1 Generic Attacks
Violations of Protocol Assumptions

Adversarial Centralization of Consensus Power. In these attacks,
a design assumption about the decentralized distribution of consensus
power is violated. Examples of this category are 51% attacks for

PoR and PoS protocols as well as 3 of Byzantine nodes for BFT

protocols (and their combinations). In a 51% attack, the majority of
the consensus power is held by the adversary. In Byzantine attacks,

1 . .
a quorum of - adversarial consensus nodes might cause the protocol

being disrupted or even halted. As a design-oriented countermeasure,
it is important to promote decentralization by incentive schemes that
reward honest participation and discourage [34] or punish [35, 36]
protocol violations.

Time-Validation Attacks. Usually, besides system time, nodes in PoW
and PoS maintain network time that is computed as the median value
of the time obtained from the peers. Such a time is often put into the
block header, while nodes, upon receiving a block, validate whether
it fits freshness constraints. An attacker can exploit this approach by
connecting a significant number of nodes and propagate inaccurate
timestamps, which can slow down or speed up the victim node’s
network time [37]. When such a desynchronized node creates a block,
this block can be discarded by a network due to freshness constraints.
To avoid de-synchronization attacks, a node can build a reputation
list of trusted peers or employ a timestamping authority [38].

Double Spending

This attack is possible due to the creation of two or more conflicting blocks
with the same height, resulting in inconsistencies called forks. Therefore,
some crypto-tokens might be temporarily spent in both conflicting blocks,
while only a single block is later included in the honest chain. To prevent
this attack in permissionless blockchains, it is recommended to wait a
certain amount of time (i.e., a few next blocks) until a block “is settled.”

54. KONFERENCE EUROPEN.CZ 195

4.2 Proof-of-Resource Protocols (PoR)

Protocols from this category require nodes to prove a spending of a scarce
resource in a lottery-based fashion [39]. Scarce resources may stand for:
(1) Computation that is represented by Proof-of-Work (PoW) protocols
(e.g., Bitcoin, Ethereum). (2) Storage used in the setting of Proof-of-Space
protocols [16] (e.g., Spacecoin [40], SpaceMint [41]). (3) Crypto-tokens
spent for Proof-of-Burn protocols (e.g., Slimcoin [17]). (4) Combinations
and modification of the previous types, such as storage and computation,
called Proof-of-Retrievability (e.g., Permacoin [18]) and storage over time,
which is represented by Proof-of-Space protocols (e.g., Filecoin [19]).
PoR protocols belong to the first generation of consensus protocols,
and they are mostly based on Nakamoto Consensus [7] that utilize PoW,
inheriting its pros (e.g., high scalability) and cons (e.g., low throughput).
For the detailed analysis of several PoW designs, we refer the reader to [42].

Pros

In PoR protocols, malicious overriding of the history of blockchain (or its
part) requires spending at least the same amount of resources as was spent
for its creation. This is in contrast to principles of PoS protocols, where a
big enough coalition may override the history with almost no cost.

Cons

stand mainly for a high operational cost. Moreover, these protocols provide
only probabilistic finality, which enables attacks forking the last few blocks
of the chain.

Security Threats and Mitigations

Selfish Mining: In selfish mining [43], an adversary attempts to privately
build a secret chain and reveal it to the public only when an honest
chain is “catching up” with the secret one. The longest chain rule
causes honest miners to adopt the attacker’s chain and invalidate
the honest chain, thus wasting their consensus power. This attack
is more efficient when consensus power of a selfish miner reaches
some threshold (e.g., 30%). The selfish mining strategy was later
generalized [44] and extended to other variants that increase the profit
of the attacker [45]. Countermeasures: (1) For the case of the longest

196

Ivan Homoliak

chain rule, the first introduced mitigation is uniform tie breaking [43],
which tells consensus nodes to choose the chain to extend uniformly
at random, regardless of which one they received first. However, this
technique is less effective when assuming network delays [44]. (2) It is
recommended to use fork choice rules that also account for the quality
of solutions and make the decision deterministic, as opposed to a
uniform tie breaking. An example of such a rule is to select the block
based on the smallest hash value. Another example is to include
partial solutions [46, 47, 48] or full (orphaned) blocks [49, 50] for
computation of block’s quality. (3) Another option is using a pseudo-
random function [51], which moreover provides unpredictability,
hence the attacker cannot determine his chances to win a tie. (4)
PoW protocols can be combined with BFT protocols, where PoW is
used only for joining the protocol and BFT for consensus itself (e.g.,
[9, 10, 51]).

Feather Forking: In this attack [52], the adversary creates incentives for

rational miners to collectively censor certain transactions. Before a
mining round begins, an adversary announces that he will not extend
the block containing blacklisted transactions, and thus will attempt
to extend a forked chain. Although this strategy is not profitable
for the adversary and the success rate is dependent on his consensus
power, rational honest nodes prefer to join on the censorship to avoid
the potential loss. Countermeasures: design-oriented protection is
to minimize the chance of the attacker being successful, which can
be done by including (and rewarding) partial solutions [46, 47, 48]
or full orphaned blocks [49, 50] into branch difficulty computation.

4.3 Byzantine Fault Tolerant (BFT) Voting Protocols

BFT protocols represent voting-based [39] consensus protocols that uti-
lize Byzantine agreement and a state machine replication [53]. These
protocols assume a fully connected topology, broadcasting messages, and
a master-replicas hierarchy. Synchronous examples of this category are
PBFT [13], RBFT, eventually synchronous examples are BFT-SMaRt [14],
Tendermint [8], BChain, and asynchronous examples are SINTRA [54]
and HoneyBadgerBFT [15]. For more details, we refer the reader to review
of BFT protocols in [55].

54. KONFERENCE EUROPEN.CZ 197

Pros

BFT protocols provide high throughput and a low latency finality. To face
their scalability limitation, BF'T protocols are often combined with PoS or
PoW. This is in line with a lottery approach [39] for selecting a portion
of all nodes, referred to as committee, which further runs BFT consensus
(e.g., Algorand [4], DFINITY [56]).

Cons

The main con of traditional BFT protocols [13] is a low scalability caused
by a high communication complexity (i.e., ©(n?)). Since these protocols
can work efficiently only with a limited number of consensus nodes, they
can be used in their pure form only in permissioned blockchains.

Security Threats and Mitigations

Many BFT protocols assume synchronous delivery of messages. However,
this assumption can be violated by unpredictable network scheduler, as
demonstrated in [15]. This fact motivates asynchronous BFT protocols that
can be based on threshold-based cryptography, which enables reliable and
consistent broadcast [54, 15]. Issues with scalability and throughput can be
dealt with by applying cryptographic constructs [57, 58] and partitioning
consensus nodes into shards that process transactions in parallel [9, 10].
Another option is to prune the number of nodes into committees [4];
however, this reduces security level of BFT and provides only probabilistic
security guarantees depending on the committee size.

4.4 Proof-of-Stake Protocols (PoS)

Similar to the PoR category, PoS protocols are based on the lottery
approach [39]. However, in contrast to PoR, no scarce resource is spent;
instead, the nodes are required “to prove investment” of crypto-tokens
in order to participate in a protocol, and thus potentially earn interest
from the invested amount. The concept of PoS was first time proposed in
Peercoin [59] as a combination with PoW — each node has its particular
difficulty for PoW, which is based on the age of the coins a node owns.
Although there exist a few pure PoS protocols (e.g., [5], [6]), the trend is
to combine them in a hybrid setting with PoR (e.g., Proof-of-Activity [60],
Peercoin [59], Snow White [61]) or BFT protocols (e.g., Algorand [4]).

198 Ivan Homoliak

In particular, a combination of PoS with BFT represents a promising
approach taking advantages of both lottery and voting, while no resources
are wasted.

Pros

The main feature of PoS protocols, as compared to PoR, is their energy
efficiency. Although some PoS protocols are often combined with a PoR
technique (e.g., [61, 59]), the overall energy spent is much less than in the
case of pure PoR protocols.

Cons

Introduction of PoS protocols has brought PoS specific issues and attacks,
while these protocols are still not formally proven to be secure. Next, PoS
protocols are semi-permissionless — a node needs to first obtain a stake
from any of existing nodes to join the protocol.

Security Threats and Mitigations

Nothing-at-Stake: Since generating a block in PoS does not cost any
energy, a node can extend two or more conflicting blocks with-
out risking its stake, and hence increase a chance to be rewarded.
Such behavior increases the number of forks and thus time to finality.
Countermeasures: Deposit-based solutions [35] require nodes to make
a deposit during some fixed period/round and checkpoint-based so-
lutions [35, 36]) employ “state freezing” at periodic snapshots, while
the blockchain can be reversed maximally up to the recent check-
point. Next option is to use cryptographic solutions [62] for revealing
identity and a private key of a node that signs two conflicting blocks.
Another countermeasure is to use backward penalization of nodes
that produced two or more conflicting chains [36, 35|. Finally, PoS
protocols can be combined with BF'T approaches, and thus forks can
hardly occur [4].

Grinding Attack: If the leader or committee producing a block is de-
termined before the round starts, then the attacker can bias this
process to increase his chances of being selected in future. For ex-
ample, if a PoS protocol takes only a hash of the previous block for
the election process, the leader of a block may bias a hash value
by suitably adjusting the content of the block in a few attempts.

54. KONFERENCE EUROPEN.CZ 199

Countermeasures: A grinding attack can be prevented by performing
a fresh leader election by an interaction of nodes (e.g., the secure
multiparty coin flipping protocol [6]) or by private checking whether
the output of a verifiable random function (VRF) is below a certain
stake-specific threshold (e.g., [4]).

Denial of Service on a Leader/Committee: If a leader or a commit-
tee are publicly determined before the round starts [6], then the
adversary may conduct a DoS attack against them and thus cause
a restart of the round — this might be repeated until adversary’s
desired nodes are elected. Countermeasures: A prevention technique
was proposed in Algorand [4] — a node privately determines whether
it is a potential leader (or committee member), and immediately
releases a block candidate (or a vote) — hence, after publishing this
data, it is too late for a DoS attack. The concept of VRF approach
was also utilized in other protocols [63, 56].

Long-Range Attack: In this attack [64] (a.k.a., posterior corruption [36]),
an adversary can bribe previously influential consensus nodes to sell
their private keys or steal the private keys by other means. Since con-
sensus nodes may exchange their crypto-tokens for fiat money, selling
their keys impose no expenses and risk. If the attacker accumulates
keys with enough stake in the past, he may rerun the consensus
protocol and rewrite the history of the blockchain. A variant of
long-range attack that considers transaction fee-based rewarding
and infrequent or no check-points is denoted as a stake-bleeding at-
tack [65]. Countermeasures: One mitigation is to lock the deposit for
a longer time than the period of participation in the consensus. The
next mitigation technique is frequent periodic check-pointing, which
causes the irreversibility of the blockchain with respect to the last
checkpoint. Another option is to apply key-evolving cryptography
and forward-secure digital signatures, which require users to evolve
their private keys, while already used keys are erased (e.g., [63]).
The third mitigation technique is enforcing a chain density in a
time-domain [65] for the protocols where the expected number of
participants in each round is known (e.g., [6]). The last option is
context-sensitive transactions, which put the hash of a recent valid
block into a transaction itself [65].

200 Ivan Homoliak
5 Replicated State Machine Layer

5.1 Transaction Protection

Mostly, transactions containing plain-text data are digitally signed by
private keys of users, enabling anybody to verify the validity of transactions
by corresponding public keys. However, such an approach provides only
pseudonymous identities that can be traced to real identities, and moreover,
it does not ensure confidentiality of data [66].

Security Threats and Countermeasures

Privacy Threats to User Identity. In many blockchains, user identi-
ties can be linked with their transactions by various deanonymization
techniques, such as network flow analysis, address clustering, transac-
tion fingerprinting [66, 67, 68]. Moreover, blockchains designed with
anonymity and privacy features (e.g., Zcash, Monero) are also vulner-
able to a few attack strategies [69]. Countermeasures: Various means
are used for obfuscation of user identities, including centralized (e.g.,
CoinJoin, Mixcoin) and decentralized (e.g., CoinShuffle) mixing ser-
vices, ring signatures [70], and non-interactive zero-knowledge proofs
(NIZKs) [11]. Some mixers enable internal linkability by involved
parties (e.g., CoinJoin) or linkability by the mixers (e.g., Mixcoin),
which are also potential threats. Unlinkability for all parties can be
achieved by multi-party computation [71], blinding signatures [72],
or layered encryption (e.g., CoinShuffle). Ring signatures provide
unlinkability to users in a signing group [70], enabling only verifica-
tion of correctness of a signature, without revealing an identity of a
signer.

Privacy of data. NIZKs [11] and blind signatures [73, 72| can be used
for preservation of data privacy. Another method is homomorphic
encryption [74], which enables to compute some operations over
encrypted messages. Privacy and confidentiality for smart contract
platforms can be achieved through trusted transaction managers [75],
trusted hardware [76], and secure multi-party computations [77].

5.2 Smart Contracts

Smart contracts, introduced to automate legal contracts, now serve as a
method for building decentralized applications on blockchains. They are

54. KONFERENCE EUROPEN.CZ 201

usually written in a blockchain-specific programming language that may
be Turing-complete and contain arbitrary programming logic or only serve
for limited purposes. In the following, we describe these two contrasting
types of smart contract languages.

Security Threats and Countermeasures

Turing-Complete Languages. This language category has a large at-
tack surface due to the possibility of arbitrary programming logic.
Examples are Serpent and Solidity, while Solidity is the most popu-
lar and widely-used one. Serpent is a high-level language that was
designed to be simple and similar to the Python language. However,
Serpent was designed in untyped fashion, lacking out-of-bound ac-
cess checks of arrays and accepting invalid code by compilers [78],
which opened the door for plenty of vulnerabilities. Hence, Serpent
showed to be as an unsuccessful attempt to simplify the coding
phase. Solidity is an object-oriented statically-typed language that is
primarily used by Ethereum platform. Contracts written in Solidity
can contain various types of vulnerabilities [79]. Mitigations of such
vulnerabilities can be done by code analysis tools [80, 81], respecting
best practices [82], utilizing known design patterns [83], audits, and
testing. Various approaches are used for source code analysis, such as
linters (e.g., SmartCheck [81], Solhint, Solium), fuzzers [84], semantic-
based program verifiers [85], and other symbolic code analyzers [86]
often using control flow-graph techniques. Note that source code
of contracts is often not public in contrast to their bytecode. For
this reason, bytecode decompilers (e.g., Erays [87], Porosity), ana-
lyzers [88], and automated exploit generators [89] can be utilized.

Turing-Incomplete Languages. The main pro of this category is its
design-oriented goal of small attack surface and emphasis on safety
but at the cost of limited expressiveness. Examples of this category
are Pact, Scilla, Vyper. Pact is a declarative language intended for
Kadena blockchain and provides type inference and module-guarded
tables to prevent direct access to modules. Pact is equipped with
the ability to express and check properties of its programs, also
leveraging SMT solvers. Scilla is designed to achieve expressiveness
and tractability while enabling formal reasoning about contract
behavior. Every computation utilizes the automata-based model,

202 Ivan Homoliak

and computations are realized as standalone atomic transitions that
strictly terminate. Scilla enables external calls only as the last
instruction of a contract, which simplifies proving safety and thus
mitigates a few vulnerabilities. Vyper is an experimental language
designed to ease the audit of smart contracts and increase security —
it contains strong typing and bounds/overflows checks.

6 Application Layer

6.1 Crypto-Tokens and Wallets

Besides cryptocurrencies that provide native crypto-tokens, there are other
blockchain applications using crypto-tokens for the purpose of providing
owners with rights against the third party (i.e., counterparty tokens) or with
a possibility of transferring asset ownership (i.e., ownership tokens) [90].
All types of tokens require the protection of private keys and secrets linked
with user identities. For this purpose, two main categories of wallets have
emerged — self-sovereign wallets and hosted wallets [91, 3, 92]. Beside
technical risks, all crypto-tokens are exposed to regulatory risk, while
non-native tokens are in addition exposed to legal risks [90].

Self-Sovereign Wallets Users of self-sovereign wallets locally store
their private keys. These wallets differ in several aspects, e.g., isolation of
the keys — there are software wallets that store the keys within the PC
(e.g., Bitcoin Core, Electrum Wallet, MyEtherWallet) as well as hardware
wallets that store keys in a sealed storage, while they expose only signing
functionality (e.g., Trezor, Ledger, KeepKey, BitLox). Another type of
wallets enables to customize functionality and security by a smart contract
(e.g., Eth. MultiSigWallet, TrezorMultisig20f3).

Hosted Wallets Hosted wallets require a centralized party for inter-
action with the wallet and thus blockchain. If a hosted wallet has full
control over private keys, it is referred to as a server-side wallet (e.g.,
Coinbase, Circle Pay Wallet, Luno Wallet), while in the case of keys stored
in the users’ browsers, the wallets are referred to as client-side wallets (e.g.,
Blockchain Wallet, BTC Wallet, Mycelium Wallet, CarbonWallet, Citowise
Wallet). We refer the reader to works [92, 91| for a security overview of
miscellaneous wallet solutions.

54. KONFERENCE EUROPEN.CZ 203
Security Threats and Mitigations

Since server-side wallets accounted for several compromises in the past,
their popularity have attenuated in favor of client-side wallets. Although
client-side wallets do not expose private keys to a 3rd party, they are
dependent on the availability of the online interface provided by such a
party. Contrary, self-sovereign wallets do not trust in a 3rd party nor
rely on its availability. However, these wallets are susceptible to key theft
(i.e., malware [93], keyloggers [3, 94]). Possible mitigation of these attacks
are hardware wallets displaying transactions to the user, while the user
confirms signing by a button (e.g., Trezor, Ledger, KeepKey). Another
option is to protect self-sovereign wallets by multi-factor authentication
using multi-signatures (e.g., TrezorMultisig20f3, Eth. MultiSigWallet),
threshold-based cryptography [95], or air-gapped OTPs [92].

6.2 Oracles

Oracles are trusted entities that provide data reflecting the state of the
world beyond the blockchain. Prediction markets (e.g., Augur, Gnosis)
were created for the purpose of trading the outcome of events — individuals
are incentivized to accurately wager on these outcomes, which serve as
data feeds. Dedicated data feeds [96, 97| build on existing blockchain
platforms or create dedicated oracle networks (e.g., ChainLink, Witnet)
that internally run consensus protocol.

Security Threats

The provision time of prediction markets may be long for many applications
and the provided set of data events may be also limited. In contrast,
dedicated data feeds enrich a data domain and significantly shorten a
provision time; however, they often rely on a trusted party [96, 97], which
may misbehave or accidentally produce wrong data. Oracle networks
eliminate trust in a single party by a consensus of the group; however,
threats related to the consensus layer of this functionality also needs to
be considered. Moreover, for providers that offer authenticated data feeds
using trusted hardware [97, 98], a vulnerability in trusted hardware may
result in a compromise of the entire data feed.

204 Ivan Homoliak

6.3 Decentralized Filesystems (DFs)

DFs serve as a data storage infrastructure running native blockchains
(e.g., Storj [99], Filecoin [19], Permacoin [18]). DFs borrow ideas from
peer-to-peer file storage systems, but they additionally incentivize data
preservation by crypto-tokens. Alternatively to native DFs, decoupling of
the stored data from the blockchain data is also possible in a few forms
of integration with existing blockchains. Beside naive storage of integrity
proofs to off-chain data, cloud services (e.g., Amazon Web Services, Google
Cloud, IBM), and distributed hash tables (DHT) [100] are promising
approaches.

Security Threats and Mitigations

While native DFs handle availability and decentralization using consensus
layer mechanisms, cloud services and DHT solutions rely on a provider’s
infrastructure and dedicated file sharing networks, respectively. Sybil
attacks claiming redundant storage of the same piece of data can be pre-
vented by unique encryption of each data copy [99]. Another attack might
target the reputation of the network by dropping data and its redundant
copies. A simple mitigation technique is to use multiple consensus nodes
for a file upload, which diminishes chances of the attack being successful.
Next mitigation is to hide the number of redundant copies using erasure
encoding [99].

7 Conclusion

In this paper, we try to systematize the knowledge about security aspects
of blockchain systems. We proposed a stack-modeled security reference
architecture, which we further projected into a threat-risk assessment
model that presents various threats and countermeasures. The stacked
model consists of four layers. At each of the layers, we surveyed specific
security issues and mitigation techniques. In future work, we plan to
amend the security issues of each layer by details and evidence about
real-world incidents.

54. KONFERENCE EUROPEN.CZ 205

References
[1] Mauro Conti et al. ,A survey on security and privacy issues of bitcoin®.
In: IEEE Communications Surveys & Tutorials 20.4 (2018).
[2] Wenbo Wang et al. ,A Survey on Consensus Mechanisms and Mining
Management in Blockchain Networks®. In: (2018).
[3] Joseph Bonneau et al. ,,Sok: Research perspectives and challenges for
bitcoin and cryptocurrencies®. In: IEEE SP. 2015.
[4] Yossi Gilad et al. ,,Algorand: Scaling byzantine agreements for
cryptocurrencies”. In: SOSP. 2017.
[5] Iddo Bentov et al. ,,Cryptocurrencies without proof of work®. In: FC.
2016.
[6] Aggelos Kiayias et al. ,Ouroboros: A provably secure proof-of-stake
blockchain protocol®. In: CRYPTQO’17. 2017.
[7] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[8] Ethan Buchman et al. ,, The latest gossip on BFT consensus®. In: (2018).
[9] Eleftherios Kokoris-Kogias et al. ,,OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding®. In: IEEE S€P. 2018. por:
10.1109/SP.2018.000-5. URL:
https://doi.org/10.1109/SP.2018.000-5.
ahdi Zamani et al. ,Rapi ain: Scaling Blockchain via Fu
10] Mahdi Z i 1. ,RapidChain: Scaling Blockchain via Full
Sharding. In: ACM CCS. 2018. por: 10.1145/3243734.3243853. URL:
https://doi.org/10.1145/3243734.3243853.
[11] Eli Ben Sasson et al. ,Zerocash: Decentralized anonymous payments
from bitcoin“. In: IEEE SP. 2014.
ohn ouceur. ,, I'he sybil attack®. In: . .
12] John R D The sybil k. In: IPTPS. 2002
[13] Miguel Castro and Barbara Liskov. ,,Practical Byzantine Fault
Tolerance®. In: OSDI. 1999, pp. 173-186.
[14] Alysson Bessani et al. ,State Machine Replication for the Masses with
BFT-SMART*. In: IEEE/IFIP DSN. 2014.
[15] Andrew Miller et al. ,The honeybadger of BFT protocols®. In: ACM
CCS. 2016.
[16] Stefan Dziembowski et al. ,,Proofs of Space. In: CRYPTO’15. 2015.
[17] P4Titan. Slimcoin: A peer-to-peer crypto-currency with proof-of-burn.
Tech. rep. 2014.
[18] Andrew Miller et al. ,Permacoin: Repurposing bitcoin work for data

preservation®. In: IEEE S&P. 2014.

https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853

206
[19]

[20]

21]

[22]

23]

[24]

[25]
[26]
27]
(28]
[29]
(30]
31]
32]
[33]

[34]

Ivan Homoliak

Protocol Labs. Filecoin: A decentralized storage network. Tech. rep.
2017.

Common Criteria. Common Criteria for Information Technology
Security Fvaluation. Tech. rep. 2017. URL: https://wuw.
commoncriteriaportal.org/files/ccfiles/CCPART1V3. 1R5.pdf.

Ivan Homoliak et al. ,,Insight Into Insiders and IT: A Survey of Insider
Threat Taxonomies, Analysis, Modeling, and Countermeasures®. In:
ACM CSUR 52.2 (2019). 1ssN: 0360-0300. por: 10.1145/3303771. URL:
http://doi.acm.org/10.1145/3303771.

Warwick Ashford. Corporate networks vulnerable to insider attacks,
report finds. http://bit.1ly/2WdPGFE. 2018.

Rodrigo Rodrigues and Peter Druschel. , Peer-to-peer Systems®. In:
Commun. ACM 53.10 (2010). 1ssN: 0001-0782. poTI:
10.1145/1831407.1831427. URL:
http://doi.acm.org/10.1145/1831407.1831427.

David S. H. Rosenthal et al. ,Notes On The Design Of An Internet
Adversary“. In: CoRR ¢s.DL/0411078 (2004). URL:
http://arxiv.org/abs/cs.DL/0411078.

ISC. BIND 9 Security Vulnerability Matriz. http://bit.ly/2Z1PiMj.
2019.

Maria Apostolaki et al. ,Hijacking bitcoin: Routing attacks on
cryptocurrencies”. In: IEEE SP. 2017.

Maria Apostolaki et al. ,SABRE: Protecting Bitcoin against Routing
Attacks®. In: arXiv preprint arXiv:1808.06254 (2018).

Matt Lepinski and K Sriram. BGPSEC protocol specification. Tech. rep.
2017.

Ethan Heilman et al. ,Eclipse Attacks on Bitcoin’s Peer-to-Peer
Network.” In: USENIX Security. 2015.

Karl Wiist and Arthur Gervais. Ethereum eclipse attacks. Tech. rep.
2016.

Yuval Marcus et al. ,Low-Resource Eclipse Attacks on Ethereum’s
Peer-to-Peer Network.“ In: 2018 (2018).

Eyal Arazi. Choosing the Right DDoS Solution (Part 4): Hybrid
Protection. http://bit.ly/2XoB8V9. 2018.

Sergio Demian Lerner. New DoS Vuln by Forcing Continuous Hard Disk
Seek/Read Activity. http://bit.1ly/2KnCA6u. 2019.

Andrew Miller et al. ,Nonoutsourceable scratch-off puzzles to discourage
bitcoin mining coalitions®*. In: ACM CCS. 2015.

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://doi.org/10.1145/3303771
http://doi.acm.org/10.1145/3303771
http://bit.ly/2WdPGFE
https://doi.org/10.1145/1831407.1831427
http://doi.acm.org/10.1145/1831407.1831427
http://arxiv.org/abs/cs.DL/0411078
http://bit.ly/2Z1PiMj
http://bit.ly/2XoB8V9
http://bit.ly/2KnCA6u

54. KONFERENCE EUROPEN.CZ 207

[35]
[36]

[37]
[38]

[39]

[40]
[41]

[42]

[43]
[44]
[45]

[46]

[47]
(48]

[49]

[50]

Vitalik Buterin and Virgil Griffith. ,,Casper the friendly finality gadget®.
In: (2017).

Phil Daian et al. ,Snow white: Robustly reconfigurable consensus and
applications to provably secure proofs of stake®. In: Iacr. 2017.

Alex Boverman. Timejacking & Bitcoin. http://bit.ly/2WKAnbM. 2011.

Pawel Szalachowski. ,,(Short Paper) Towards More Reliable Bitcoin
Timestamps®. In: IEEE CVCBT. 2018.

Hyperledger team. Hyperledger Architecture, Vol. 1: Consensus. 2017.
URL: https://www.hyperledger.org/wp-content/uploads/2017/08/
Hyperledger_Arch_WG_Paper_1_Consensus.pdf.

Sunoo Park et al. Spacecoin: A cryptocurrency based on proofs of space.
Tech. rep. 2015.

Trond Hgnsi. ,SpaceMint: A Cryptocurrency Based on Proofs of Space®.
MA thesis. NTNU, 2017.

Ren Zhang and Bart Preneel. ,,Lay Down the Common Metrics:
Evaluating Proof-of-Work Consensus Protocols’ Security.“ In: IEEE
S€P. 2019.

Ittay Eyal and Emin Giin Sirer. ,,Majority is not enough: Bitcoin mining
is vulnerable®. In: Communications of the ACM 61.7 (2018).

Ayelet Sapirshtein et al. ,Optimal selfish mining strategies in Bitcoin®.
In: FC. 2016.

Kartik Nayak et al. ,,Stubborn mining: Generalizing selfish mining and
combining with an eclipse attack. In: IEEE FuroSP. 2016.

Alexei Zamyatin et al. Fluz: Revisiting Near Blocks for Proof-of-Work
Blockchains. https://eprint.iacr.org/2018/415/20180529:172206.
2018.

Rafael Pass and Elaine Shi. ,,Fruitchains: A fair blockchain“. In: PODC.
2017.

Pawel Szalachowski et al. ,,StrongChain: Transparent and Collaborative
Proof-of-Work Consensus”. In: USENIX Security. 2019.

Yonatan Sompolinsky and Aviv Zohar. ,,Accelerating Bitcoin’s
Transaction Processing. Fast Money Grows on Trees, Not Chains.“ In:
2013.881 (2013).

Ren Zhang and Bart Preneel. ,,Publish or perish: A
backward-compatible defense against selfish mining in bitcoin®. In:
CT-RSA. 2017.

https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://eprint.iacr.org/2018/415/20180529:172206

208

[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]
[63]

[64]
[65]

[66]

[67]

Ivan Homoliak

Eleftherios Kokoris Kogias et al. ,Enhancing bitcoin security and
performance with strong consistency via collective signing*. In: USENIX
Security. 2016.

A. Miller. Feather-forks. http://bit.1ly/2JVqsKG. 2013.

Fred B Schneider. ,,Implementing fault-tolerant services using the state
machine approach: A tutorial“. In: ACM CSUR 22.4 (1990).

Christian Cachin and Jonathan A Poritz. ,,Secure intrusion-tolerant
replication on the Internet“. In: DSN. 2002.

Christian Cachin and Marko Vukolié. ,,Blockchain consensus protocols in
the wild“. In: arXiv preprint arXiv:1707.01873 (2017).

Timo Hanke et al. ,,Dfinity technology overview series, consensus
system®. In: arXiv preprint arXiw:1805.04548 (2018).

Christian Cachin et al. ,Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography*. In: JoC 18.3
(2005).

Victor Shoup. ,,Practical threshold signatures®. In: FEUROCRYPT. 2000.

S. King and S. Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. Tech. rep. 2012. URL:
https://peercoin.net/assets/paper/peercoin-paper.pdf.

Iddo Bentov et al. ,,Proof of Activity: Extending Bitcoin’s Proof of Work
via Proof of Stake.“ In: (2014).

Iddo Bentov et al. ,Snow White: Provably Secure Proofs of Stake.“ In:
(2016).

Wenting Li et al. ,,Securing PoS blockchain protocols®*. In: DPM. 2017.

Bernardo David et al. ,,Ouroboros Praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain“. In: EUROCRYPT. 2018.

Vitalik Buterin. Long-range attacks: The serious problem with adaptive
proof of work. http://bit.1ly/2JUYNJE. 2014.

Peter Gazi et al. ,Stake-bleeding attacks on proof-of-stake blockchains®.
In: IEEE CVCBT. 2018.

Qi Feng et al. ,,A survey on privacy protection in blockchain system®. In:
Journal of Network and Computer Applications 126 (2019). 1SSN:
1084-8045. poI: https://doi.org/10.1016/j.jnca.2018.10.020. URL:
http://www.sciencedirect.com/science/article/pii/
S51084804518303485.

Alex Biryukov et al. ,,Deanonymisation of clients in Bitcoin P2P
network”. In: ACM CCS. 2014.

http://bit.ly/2JVqsKG
https://peercoin.net/assets/paper/peercoin-paper.pdf
http://bit.ly/2JUYNJE
https://doi.org/https://doi.org/10.1016/j.jnca.2018.10.020
http://www.sciencedirect.com/science/article/pii/S1084804518303485
http://www.sciencedirect.com/science/article/pii/S1084804518303485

54. KONFERENCE EUROPEN.CZ 209

[68]
[69]
[70]

[71]

[72]
(73]

[74]

[75]

[76]

[77]

(78]
[79]

(80]
(81]

(82]

(83]

Ivan Pustogarov. ,,Deanonymisation techniques for Tor and Bitcoin*.
PhD thesis. University of Luxembourg, 2015.

George Kappos et al. ,,An empirical analysis of anonymity in zcash“. In:
USENIX Security. 2018.

Shen Noether. ,,Ring SIgnature Confidential Transactions for Monero.*
In: JACR Cryptology ePrint Archive 2015 (2015), p. 1098.

Jan Henrik Ziegeldorf et al. ,,Secure and anonymous decentralized
Bitcoin mixing®. In: Future Generation Computer Systems 80 (2018).
I1SSN: 0167-739X. DoTI:
https://doi.org/10.1016/j.future.2016.05.018. URL: http://www.
sciencedirect.com/science/article/pii/S0167739X16301297.

Luke Valenta et al. ,,Blindcoin: Blinded, Accountable Mixes for Bitcoin‘.
In: FC. 2015. 1SBN: 978-3-662-48051-9.

Ethan Heilman et al. ,,Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions®. In: FC. 2016.

Pascal Paillier. ,,Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes“. In: EUROCRYPT’99. Ed. by Jacques Stern. 1999.
ISBN: 978-3-540-48910-8.

Ahmed Kosba et al. ,Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts”. In: IEEE S&P. 2016.

Raymond Cheng et al. ,,Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contract
execution®. In: arXiv preprint arXiv:1804.05141 (2018).

Guy Zyskind et al. ,Enigma: Decentralized computation platform with
guaranteed privacy“. In: (2015).

Zeppelin Sollutions. Serpent Compiler Audit. bit.ly/2MrHQbX. 2017.

Nicola Atzei et al. ,,A survey of attacks on ethereum smart contracts
(SoK)“. In: POST. 2017.

Reza M Parizi et al. ,Empirical vulnerability analysis of automated
smart contracts security testing on blockchains®. In: CASCON. 2018.

Sergei Tikhomirov et al. ,,Smartcheck: Static analysis of ethereum smart
contracts“. In: WETSEB. 2018.

SmartContractSecurity. Smart Contract Weakness Classification
Registry.
https://github.com/SmartContractSecurity/SWC-registry/. 2019.

Maximilian Wohrer and Uwe Zdun. ,Smart contracts: Security patterns
in the ethereum ecosystem and solidity*. In: IWBOSE. 2018.

https://doi.org/https://doi.org/10.1016/j.future.2016.05.018
http://www.sciencedirect.com/science/article/pii/S0167739X16301297
http://www.sciencedirect.com/science/article/pii/S0167739X16301297
bit.ly/2MrHQbX
https://github.com/SmartContractSecurity/SWC-registry/

210
j84]
85]
186]
87]
88]
89]
190]
j01]
j92]

[93]

[94]

[95]

[96]

[97]
[98]
[99]

[100]

Ivan Homoliak

Bo Jiang et al. ,,Contractfuzzer: Fuzzing smart contracts for
vulnerability detection®. In: ASE. 2018.

Everett Hildenbrandt et al. Kevm: A complete semantics of the
ethereum virtual machine. Tech. rep. 2017.

Petar Tsankov et al. ,Securify: Practical security analysis of smart
contracts®. In: ACM CCS. 2018.

Yi Zhou et al. ,,Erays: reverse engineering ethereum’s opaque smart
contracts. In: USENIX Security. 2018.

Ivica Nikoli¢ et al. ,,Finding the greedy, prodigal, and suicidal contracts
at scale”. In: ACM ACSAC. 2018.

Johannes Krupp and Christian Rossow. ,teether: Gnawing at ethereum
to automatically exploit smart contracts”. In: USENIX Security. 2018.

MME. Conceptual Framework for Legal and Risk Assessment of Crypto
Tokens. http://bit.1ly/2Wlled2. 2018.

Shayan Eskandari et al. ,,A first look at the usability of bitcoin key
management®. In: arXiv preprint arXiw:1802.04351 (2018).

Ivan Homoliak et al. ,An Air-Gapped 2-Factor Authentication for
Smart-Contract Wallets®. In: arXiv preprint arXiv:1812.03598 (2018).

Dell SecureWorks. Cryptocurrency-Stealing Malware Landscape. 2015.
URL: http://www.opensource.im/cryptocurrency/cryptocurrency-
stealing-malware-landscape-dell-secureworks.php.

Antony Peyton. Cyren sounds siren over Bitcoin siphon scam. 2017.
URL: https://www.bankingtech.com/2017/01/cyren-sounds-siren-
over-bitcoin-siphon-scam/.

Steven Goldfeder et al. Securing Bitcoin wallets via a new DSA/ECDSA
threshold signature scheme. 2015.

Juan Guarnizo and Pawel Szalachowski. ,,PDFS: Practical Data Feed
Service for Smart Contracts®. In: arXiv preprint arXiv:1808.066/1
(2018).

Concur Technologies, Inc. Oraclize Documentation.
http://bit.1ly/2wAR3UK. 2008.

Fan Zhang et al. ,, Town crier: An authenticated data feed for smart
contracts“. In: ACM CCS. 2016.

Shawn Wilkinson et al. ,,Storj a peer-to-peer cloud storage network®. In:
(2014).

Ruinian Li et al. ,,Blockchain for large-scale internet of things data
storage and protection®. In: IEEE Transactions on Services Computing
(2018).

http://bit.ly/2WlLed2
http://www.opensource.im/cryptocurrency/cryptocurrency-stealing-malware-landscape-dell-secureworks.php
http://www.opensource.im/cryptocurrency/cryptocurrency-stealing-malware-landscape-dell-secureworks.php
https://www.bankingtech.com/2017/01/cyren-sounds-siren-over-bitcoin-siphon-scam/
https://www.bankingtech.com/2017/01/cyren-sounds-siren-over-bitcoin-siphon-scam/
http://bit.ly/2wAR3UK

E-BANKING AUTHENTICATION — DYNAMIC
PASSWORD GENERATORS AND HARDWARE
TOKENS

Ondriej Hujnak, Kamil Malinka, Petr Hanacek

1 Introduction

The banking sector keeps going through continuous digital evolution as
the paradigms in the finance sector are shifting. We witnessed the transfer
from in-person banking to online e-banking, and this trend continues
towards mobile banking. With the emergence of new European directives
that affect this area and new approaches to authentication, we decided to
review the current state of e-banking authentication options. This paper
presents our findings and is based on our recent research of e-banking
security][1].

Because the clear trend in authentication is the usage of multi-factor
authentication, we present in the first section of our paper an overview
of possible combinations of the multi-factor authentication schemes and
evaluate their compliance with the newest standard available — the PSD2
directive of the European Union. Moreover we discuss trends in the
authentication approaches and outline possible future directions.

In the second part we focus on newly emerged or recently updated
authentication methods. Namely we take a closer look at dynamic password
generators, which are currently very popular mean of authentication in
e-banking systems, and hardware security modules, which are gaining
popularity and seem like a logical next step in authentication.

We conclude the paper with a description of FIDO2 open standard for
strong authentication, which is directly targeted on web environment and
enables usage of advanced authentication options in any web project.

212 Ondrej Hujnak, Kamil Malinka, Petr Hanacek
2 Authentication

The classic approach for authentication in digital systems is utilisation of
basic memorized secret such as static password or PIN code. Even though
we assume the usage of TLS for transport encryption, the method shows
the weakest resistance against various attacks and alternative authentica-
tion options are actively researched[2]. We can divide the authentication
primitives (basic principles that can be used for authentication) into three
categories — knowledge, possession and inherence, and every authentication
scheme can be seen as a combination or specific use of those primitives.
Nowadays, direct implementations of those primitives (methods) are not
considered inherently secure and to achieve satisfiable security, modern
authentication schemes combine multiple methods. Such schemes are
called multi-factor (MFA), where factor denotes an authentication method,
and European banks are legally required to use them.

In Table 1, we describe features of common combinations of authen-
tication methods. In the table we put checkmark if the combination of
methods satisfies the requirement and cross mark if it doesn’t. If the mark
is in brackets, the assessment is not unambiguous, in which case we used
the more common rating and added the condition in the footnote. In
case the feature can be enabled possible by some additional adjustment of
the basic scheme, we use ’Opt.” as in the optional feature.

The reader’s main takeaway is the quick overview of the possibilities and
their features with respect to the PSD2 requirements, which we consider
the most advanced in the e-banking area. Those requirements are:

Cloning protection — replication of the authentication primitive is pre-
vented,

Factor independence — breach of one factor (method) does not com-
promise the reliability of the other,

Dynamic linking — generated authentication code is bound to the trans-
action and the amount and payee are presented to the user,

Strong Customer Authentication (SCA) - the factors used must sat-
isfy the factor independence condition and consist of at least two
categories of primitives out of knowledge, possession and inherence.

For further ease of understanding, we state the category of the given
scheme as defined by Frederik Mennes in his SCA requirement analysis|3].
There are four categories based on the segregation of the factors:

54. KONFERENCE EUROPEN.CZ 213

laa (one-app-authentication) describes the e-banking apps with built-in
authenticators,

2aa (two-app-authentication) means both authentication and e-banking
apps are separate apps,

2da (two-device-authentication) extracts authentication to a separate
device,

oob (out-of-band) uses a third party (such as telco service) for authenti-
cation.

2.1 Trends in authentication

What we consider interesting is the continuous evolution of a typical e-
banking system, especially in the authentication and authorisation area.
It moved from password-based authentication, over HW tokens and SMS
codes, to currently used Dynamic passwords generated by mobile applica-
tions.

A few years ago, the hardware tokens (often called “calculator”) were
the most spread method for authentication. They represent the first true
OTP systems and provided very high security but declined because of
the usability constraints as they required users to carry an extra device
and manually transfer the generated code into the e-banking system. They
were shortly superseded by SMS codes, but the situation changed because,
unlike SMS, hardware tokens easily satisfy the SCA requirements of PSD2,
and the burden of manual code transfer is overcome by the new generation
of HW Tokens with NFC/Bluetooth technologies.

The most apparent new thread is the spread of biometrics for authen-
tication, which prevailed mostly in smartphones despite they need to be
used only in combination with another method. The common use of bio-
metrics is strengthening the KYC (know your customer) process for remote
customer verification or device authorisation when using a hardware token,
a dynamic password generator or secure enclave.

Secure enclave is a relatively recent addition to the authentication
methods, which is covered in Section 4. A secure enclave is usually
protected by other authentication methods (password, PIN or biometrics)
and, apart from providing key storage and cryptographic operations, is
used as a root of trust and checks the integrity of operating systems and
applications.

214 Ondrej Hujnak, Kamil Malinka, Petr Hanacek

®
b0 2 R g
£ w0 g g
TS 88 f£& <« E
28 8% 2% U 28
Method combination Ve mE A= n O
SMS (v)? X Opt. X oob
Password + PIN X X X X
Password + Grid card X v X W) 2da
PKI (private key)protected by password v X v X
HW Token v v v v 2da
HW Tokenprotected by PIN v v v v 2da
HW Tokenprotected by BIO v v v v 2da
Password + SMS ()2 v Opt. (V)% oob
Integrated DPGprotected by password x* (x)° v (X)° laa
Separated DPGprotected by password XNt v V)1 2aa
Dynamic password + BIO (X7 v v)1 2aa
BIO + Password X 4 X 4
BIO + SMS V)2 v Opt. + oob
PKI (private key)protected by BIO x)* X v X
Secure Enclaveprotected by BIO v v v v
Secure Enclaveprotected by password v v v v

Table 1: PSD2 Features of authentication methods and their combina-
tions.[1]
! Technically could be considered valid, but in reality is not used as such.
2 Indirectly possible by attacks on telecommunication links such as SIM Swapping
and SS7 attacks.
3 To fulfil SCA requirements, the SMS receiving device have to be independent of
the other one where the password is entered. Nowadays, this is difficult to achieve.
4 Depends on OS capabilities, in case of rooted OS (called jailbreak in iOS) cannot
be ensured [4]. E.g. biometrics is cloneable by design, and protection depends on
second factor properties.
5 The satisfiability of factor independence is not decided yet; if it does not satisfy
factor independence, it isn’t SCA.

54. KONFERENCE EUROPEN.CZ 215

In the future, we can expect broader usage of secure hardware and
enclaves in both mobile phones and computers, which will support the
multi-factor authentication in one device. We can see the trend to rise
even now, when Apple utilizes their Apple Secure Enclave very tightly in
iOS since the iPhone 5 and Windows 11 require a TPM chip to be present.
Delegation of authorisation and crypto-operations into a tailored hardware
will ease the access hardening and compliance with novel legislations
targeted on personal security in digital world.

Another trend we might forecast is the consolidation of identity, as
the national (governmental) IDs are digitalised as electronic identity (eID)
and such can be used for authentication across various systems including
e-banking. The situation in electronic identity varies a lot nowadays, as
there are countries, where the governmental eID is used in e-banking
(Belgian itsme, Estonian Mobiil-ID) while in other countries banks are
the identity providers, and e-government services use e-banking identity
(Norwegian Mobile BankID, Swedish BankID, Czech BankID). In this case
the trend in e-banking authentication will follow the eID option and we
can see two clear paths being taken in the world. Either the eID and
physical ID card will be bound together and the physical ID card will
be used for authentication as a hardware token. Or the identities will be
decoupled, which will allow the eID to be transferred digitally and utilised
in secure enclaves.

3 Dynamic password generators

Dynamic password generators (DPG) are systems, which generate one-time
passwords (OTP) — a special authentication primitive, which is valid only
for one authentication process and can never be reused.

The modern trend in OTPs is the usage of mobile applications as DPGs,
where this application simulates HW tokens in SW and often implements
a challenge-response protocol. As the DPG is an authentication method
based on OTP primitive, it is a single-factor and is currently used in
authentication schemes either bundled with e-banking application, or
decoupled. When bundled, it is crucial that the application uses a HSM or
enclave in order to satisfy the factor independence. Because the presence of
HSM /enclave cannot be ensured on all user devices, banks currently prefer
the decoupled variant, where they argue that the factor independence is
assured by the mobile operating system and its process isolation.

216 Ondrej Hujnak, Kamil Malinka, Petr Hanacek

ﬁ—iardware Security Module \
Secure
oS 1/0 CPU Storage

I
Cryptographic operations

Key Encryption
Management Decryption
TRNG Hash

s 4

Figure 1: High level Hardware Security Module Architecture.[1]

4 Hardware security module and enclaves

Hardware security module (HSM) is a hardware module equipped with a mi-
croprocessor containing some security relevant data (keys) and algorithms
for manipulating them (see Figure 1). This specialised hardware ensures
both logical security by isolating such data from the system and hardware
security as these modules are designed to be tamper-proof. Its features
can be used for two authentication-related operations:

e cryptographic operations and private key store (HSM never reveals
the key),

e operating system integrity verification (attestation).

Such a module can be either integral part of a more robust system
(standalone chip on motherboard of a computer, or a smartphone), or can
be equipped with some kind of interface (USB, NFC, Bluetooth) and used
standalone in a form of HW token device (such as U2F /FIDO keys) or
smart card.

Secure enclave implements a trusted execution environment (TEE)
concept, where an application is being run in an isolated environment.
The application code is isolated from the operating system and memory
is encrypted. A secure enclave guarantees confidentiality, integrity, and
security for the application running within it [5]. The main difference when
compared with HSMs is that enclaves allow us to run arbitrary operations
(opposed to a very specific set of operations in HSM) within the device

54. KONFERENCE EUROPEN.CZ 217

External Authenticator Client/Platform Relying Party (RP)

Application

Gl Platiorm G

Internal Authenticator

Y
FIDO2

Figure 2: FIDO2 standard protocol scheme.|[6]

while maintaining a high level of trust and security. Examples of secure
enclave technology are Intel SGX, ARM TrustZone, and AMD Memory
Encryption Technology.

5 Fast IDentity Online (FIDO)

FIDO2 (“Fast IDentity Online”) is an open authentication standard, main-
tained by the FIDO Alliance, that consists of the W3C Web Authentication
(WebAuthn) specification defining the javascript interface and the Client
to Authentication Protocol (CTAP) controlling the connection between
an authenticator and the platform (see Figure 2). FIDO2 is the successor
of the U2F (Universal 2"¢ Factor) protocol that enables internet users
to securely access any number of online services with a security key, and
maintains backward compatibility.

It is important to note, that FIDO2 standard is not web specific.
Bindings exist for various programming languages such as Java, Python
and Go. Moreover FIDO2 can enable the usage of authenticators for
various tasks on all major operating systems, such as integration with
Windows Hello for log in, PAM log in or LUKS2 integration at Linux or
even log in on MacOS.

218 Ondrej Hujnak, Kamil Malinka, Petr Hanacek
5.1 WebAuthn

WebAuthn defines an API enabling the creation and use of strong, attested,
scoped, public key-based credentials by web applications, for the purpose
of strongly authenticating users. It is currently supported by all major
browsers via javascript navigator.credentials object with two relevant
methods corresponding to two phases:

e create() either registers a new account or associates a new asym-
metric key pair credentials with an existing account.

e get () uses an existing set of credentials to authenticate to a service,
either logging a user in or as a form of second-factor authentication.

First phase is the creation of the new credentials on some device
(including private key) and registration of the public key for verification.
The function create takes a CredentialCreationOptions dictionary as a
parameter and all the options are set within. Notably nonce for a challenge-
response part, identification of the user and relying party, authenticator
restrictions and required attestation type. The registration code can be
seen in Listing 1.

The credential object from response then contains its type (public-
key in our case), credentialld, client data and optionally the attestation
certificate to verify the source of the credentials.

Listing 1: WebAuthn registration

const credentialCreationOptions = {
challenge: Uint8Array, // nonce
rp: {
name: String,
id: String,

I

user: {
id: Uint8Array, // random, stored in
// the authenticator
name: String,
displayName: String,
’
pubKeyCredParams: [{alg: Number,
type: "public-key"}],

54. KONFERENCE EUROPEN.CZ 219

Relying Party Server @ server validation

clientDataJSON,
PublicKeyCredentialRequestOptions challenge @ authenticatorData, —AuthenticatorAssertionResponse
signature

RP JavaScript Application

WebAuthnAPI —»
Browser

relying party id, @ authenticatorData
clientDataHash signature

Authenticator

©)
user verification,
create assertion

Figure 3: User authentication via WebAuthn.[7]

authenticatorSelection: {
authenticatorAttachment: "cross-platform",
// "cross-platfor" or "platform"

I

timeout: Number,

attestation: String

// "none", "indirect" or "direct"

}s

const credential=await navigator.credentials.create ({
publicKey: credentialCreationOptions
1

The authentication of a registered user is then handled through the get
function, which retrieves the client identity as depicted by Figure 3. The
function accepts a CredentialRequestOptions dictionary as a parameter
and within it it sets mainly the new challenge nonce and the credentialld,
which was retrieved during registration is passed in here. It can also option-
ally limit the transports, which can be used for authenticator connection
via CTAP. The overview of the call can be seen in the Listing 2.

The response contains again the credential object, but this time the
client data are signed with the user private key and user handle is returned
as well. This allows the verification of the client data.

220 Ondrej Hujnak, Kamil Malinka, Petr Hanacek

Listing 2: WebAuthn authentication

const publicKeyCredentialRequestOptions = {
challenge: Uint8Array, // nonce
allowCredentials: [{
id: Uint8Array, // credentialld from
// credential object
type: ’public-key’,
transports: [’usb’, ’ble’, ’nfc’]|,// optional
}]7

timeout: Number,

}

const assertion = await navigator.credentials.get ({
publicKey: publicKeyCredentialRequestOptions
1

The compatible authenticators for the use with WebAuthn can be
implemented in software running either on device (called platform authen-
ticators by the standard) or off device (called roaming authenticators)
accessible over some transport (such as USB, Bluetooth or NFC).

5.2 CTAP

The Client to Authenticator Protocol (CTAP) is a complementary protocol
to WebAuthn API. The application developers do not interact with it
directly, but via the WebAuthn interface and it enables the roaming (ex-
ternal), user-controlled cryptographic authenticator (such as a smartphone
or a hardware security key) to interoperate with a client platform such as
a laptop. The CTAP specification actually refers to two protocol versions,
the CTAP1/U2F protocol and the CTAP2 protocol, where an authenticator
implementing CTAP2 protocol is usually called FIDO2 authenticator.

6 Conclusion

In the paper, we provide the reader with analysis of possible multi-factor
authentication method combinations with respect to PSD2 requirements.
We covered the trends in e-banking authentication with clear display of
current schemes and probable future directions.

54. KONFERENCE EUROPEN.CZ 221

The reader should be familiar with dynamic password generators, their
features and shortcomings. We presented the hardware security module
concept and its current implementations and usage. Lastly we provided
a thorough overview of concurrent standard for strong authentication in
web environment — FIDO2.

References

(1]

2]

3l

(4]

]

(6]

(7]

Kamil Malinka et al. ,,E-Banking Security Study—10 Years Later”. In:
IEEE Access 10 (2022), pp. 16681-16699. poI:
10.1109/ACCESS.2022.3149475.

Joseph Bonneau et al. ,The quest to replace passwords: A framework for
comparative evaluation of web authentication schemes®. In: 2012 IFEE
Symposium on Security and Privacy. IEEE. 2012, pp. 553-567.

Fredrik Mennes. PSD2: Which Strong Authentication and Risk Analysis
Solutions comply with the EBA’s Final Draft RTS? Accessed on Nov. 12,
2020. Apr. 2017. URL:
https://frederikmennes.wordpress.com/2017/04/19/psd2-which-
strong-authentication-and-risk-analysis-solutions-comply-
with-the-ebas-final-draft-rts/.

Vincent Haupert and Tilo Miiller. ,,On App-based Matrix Code
Authentication in Online Banking®. In: Proceedings of the 4th
International Conference on Information Systems Security and Privacy -
ICISSP. 2018, pp. 149-160. 1SBN: 978-989-758-282-0. DOI:
10.5220/0006650501490160.

Nishank Vaish. Why are Enclaves Taking Over the Security World?
Accessed on Dec. 7, 2020. July 2019. URL:
https://fortanix.com/blog/2019/07/why-are-enclaves-taking-
over-security-world/.

Anna Sinitsyna. Beyond Passwords: FIDO2 and WebAuthn in Practice.
Accessed on Apr. 20, 2022. Dec. 2019. URL:
https://www.inovex.de/de/blog/fido2-webauthn-in-practice/.

J.C. Jones et al. Web Authentication:An API for accessing Public Key
Credentials Level 1. W3C Recommendation.
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/. W3C, Mar.
2019.

https://doi.org/10.1109/ACCESS.2022.3149475
https://frederikmennes.wordpress.com/2017/04/19/psd2-which-strong-authentication-and-risk-analysis-solutions-comply-with-the-ebas-final-draft-rts/
https://frederikmennes.wordpress.com/2017/04/19/psd2-which-strong-authentication-and-risk-analysis-solutions-comply-with-the-ebas-final-draft-rts/
https://frederikmennes.wordpress.com/2017/04/19/psd2-which-strong-authentication-and-risk-analysis-solutions-comply-with-the-ebas-final-draft-rts/
https://doi.org/10.5220/0006650501490160
https://fortanix.com/blog/2019/07/why-are-enclaves-taking-over-security-world/
https://fortanix.com/blog/2019/07/why-are-enclaves-taking-over-security-world/
https://www.inovex.de/de/blog/fido2-webauthn-in-practice/

	Willi Lazarov, Zdeněk Martinásek, Roman KümmelPTWEBDISCOVER: Nástroj pro efektivní mapování webových aplikací během penetračního testování
	Mgr. Jan KvapilBug Bounty Hunting
	Adam Janovsky, Petr Svenda, Jan Jancar, Jiri Michalik, Stanislav BobonBungle in the jungle: Analysing the security certifications landscape
	Jaroslav ŘezníkVládní certifikace a otevřený software
	Jan DušátkoStandardizace v oblasti kryptografie
	Milan BrožLesk a bída šifrování disků
	Tomas WeinfurtCertificate Validation
	Antonín Dufka, Jakub Janků, Jiří Gavenda, Petr ŠvendaMeeSign: Prahové podepisování pro správu elektronických důkazů
	Roman OravecBinary Obfuscation using the LLVM Framework
	Ádám Ruman, Daniel KouřilDetection of Malicious Code in SSH programs
	Anton Firc, Kamil Malinka, Petr HanáčekCreation and detection of malicious synthetic media – a preliminary survey on deepfakes
	Petr JedličkaHardwarově akcelerovaná kryptografie s využitím FPGA
	Martin ŠebelaPhishingator aneb cvičný phishing nejen na ZČU
	Anton Firc, Kamil MalinkaPractical lessons of (deep)faking human speech
	Martin Perešíni, Ivan Homoliak, Kamil Malinka, Federico Matteo Benčić, Tomáš HladkýSimulations of DAG-based Blockchain Protocols and Attacks on the PHANTOM Protocol via Transaction Selection Strategies
	Ivan HomoliakThe Security Reference Architecture for Blockchains: Towards a Standardized Model for Studying Vulnerabilities, Threats, and Defenses
	Ondřej Hujňák, Kamil Malinka, Petr HanáčekE-Banking Authentication – Dynamic Password Generators and Hardware Tokens

